mirror of
https://github.com/zrwusa/data-structure-typed.git
synced 2024-11-10 08:04:05 +00:00
27 KiB
27 KiB
What
Brief
Javascript & TypeScript Data Structure Library.
Meticulously crafted to empower developers with a versatile set of essential data structures. Our library includes a wide range of data structures
Data Structures
Binary Tree, Binary Search Tree (BST), AVL Tree, Tree Multiset, Segment Tree, Binary Indexed Tree, Graph, Directed Graph, Undirected Graph, Linked List, Singly Linked List, Doubly Linked List, Queue, Object Deque, Array Deque, Stack, Hash, Coordinate Set, Coordinate Map, Heap, Priority Queue, Max Priority Queue, Min Priority Queue, Trie
How
install
yarn
yarn add data-structure-typed
npm
npm install data-structure-typed
Binary Search Tree (BST) snippet
import {BST, BSTNode} from 'data-structure-typed';
const tree = new BST();
expect(tree).toBeInstanceOf(BST);
const ids = [11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5];
tree.addMany(ids);
expect(tree.root).toBeInstanceOf(BSTNode);
if (tree.root) expect(tree.root.id).toBe(11);
expect(tree.count).toBe(16);
expect(tree.has(6)).toBe(true);
const node6 = tree.get(6);
expect(node6 && tree.getHeight(node6)).toBe(2);
expect(node6 && tree.getDepth(node6)).toBe(3);
const nodeId10 = tree.get(10, 'id');
expect(nodeId10?.id).toBe(10);
const nodeVal9 = tree.get(9, 'val');
expect(nodeVal9?.id).toBe(9);
const nodesByCount1 = tree.getNodes(1, 'count');
expect(nodesByCount1.length).toBe(16);
const leftMost = tree.getLeftMost();
expect(leftMost?.id).toBe(1);
const node15 = tree.get(15);
const minNodeBySpecificNode = node15 && tree.getLeftMost(node15);
expect(minNodeBySpecificNode?.id).toBe(12);
const subTreeSum = node15 && tree.subTreeSum(node15);
expect(subTreeSum).toBe(70);
const lesserSum = tree.lesserSum(10);
expect(lesserSum).toBe(45);
expect(node15).toBeInstanceOf(BSTNode);
if (node15 instanceof BSTNode) {
const subTreeAdd = tree.subTreeAdd(node15, 1, 'count');
expect(subTreeAdd).toBeDefined();
}
const node11 = tree.get(11);
expect(node11).toBeInstanceOf(BSTNode);
if (node11 instanceof BSTNode) {
const allGreaterNodesAdded = tree.allGreaterNodesAdd(node11, 2, 'count');
expect(allGreaterNodesAdded).toBeDefined();
}
const dfsInorderNodes = tree.DFS('in', 'node');
expect(dfsInorderNodes[0].id).toBe(1);
expect(dfsInorderNodes[dfsInorderNodes.length - 1].id).toBe(16);
tree.balance();
expect(tree.isBalanced()).toBe(true);
const bfsNodesAfterBalanced = tree.BFS('node');
expect(bfsNodesAfterBalanced[0].id).toBe(8);
expect(bfsNodesAfterBalanced[bfsNodesAfterBalanced.length - 1].id).toBe(16);
const removed11 = tree.remove(11, true);
expect(removed11).toBeInstanceOf(Array);
expect(removed11[0]).toBeDefined();
expect(removed11[0].deleted).toBeDefined();
if (removed11[0].deleted) expect(removed11[0].deleted.id).toBe(11);
expect(tree.isAVLBalanced()).toBe(true);
expect(node15 && tree.getHeight(node15)).toBe(2);
const removed1 = tree.remove(1, true);
expect(removed1).toBeInstanceOf(Array);
expect(removed1[0]).toBeDefined();
expect(removed1[0].deleted).toBeDefined();
if (removed1[0].deleted) expect(removed1[0].deleted.id).toBe(1);
expect(tree.isAVLBalanced()).toBe(true);
expect(tree.getHeight()).toBe(4);
// The code for removing these nodes (4, 10, 15, 5, 13, 3, 8, 6, 7, 9, 14) in sequence has been omitted.
expect(tree.isAVLBalanced()).toBe(false);
const bfsIDs = tree.BFS();
expect(bfsIDs[0]).toBe(2);
expect(bfsIDs[1]).toBe(12);
expect(bfsIDs[2]).toBe(16);
const bfsNodes = tree.BFS('node');
expect(bfsNodes[0].id).toBe(2);
expect(bfsNodes[1].id).toBe(12);
expect(bfsNodes[2].id).toBe(16);
Directed Graph simple snippet
import {DirectedGraph, DirectedVertex, DirectedEdge, VertexId} from 'data-structure-typed';
let graph: DirectedGraph<DirectedVertex, DirectedEdge>;
beforeEach(() => {
graph = new DirectedGraph();
});
it('should add vertices', () => {
const vertex1 = new DirectedVertex('A');
const vertex2 = new DirectedVertex('B');
graph.addVertex(vertex1);
graph.addVertex(vertex2);
expect(graph.hasVertex(vertex1)).toBe(true);
expect(graph.hasVertex(vertex2)).toBe(true);
});
it('should add edges', () => {
const vertex1 = new DirectedVertex('A');
const vertex2 = new DirectedVertex('B');
const edge = new DirectedEdge('A', 'B');
graph.addVertex(vertex1);
graph.addVertex(vertex2);
graph.addEdge(edge);
expect(graph.hasEdge('A', 'B')).toBe(true);
expect(graph.hasEdge('B', 'A')).toBe(false);
});
it('should remove edges', () => {
const vertex1 = new DirectedVertex('A');
const vertex2 = new DirectedVertex('B');
const edge = new DirectedEdge('A', 'B');
graph.addVertex(vertex1);
graph.addVertex(vertex2);
graph.addEdge(edge);
expect(graph.removeEdge(edge)).toBe(edge);
expect(graph.hasEdge('A', 'B')).toBe(false);
});
it('should perform topological sort', () => {
const vertexA = new DirectedVertex('A');
const vertexB = new DirectedVertex('B');
const vertexC = new DirectedVertex('C');
const edgeAB = new DirectedEdge('A', 'B');
const edgeBC = new DirectedEdge('B', 'C');
graph.addVertex(vertexA);
graph.addVertex(vertexB);
graph.addVertex(vertexC);
graph.addEdge(edgeAB);
graph.addEdge(edgeBC);
const topologicalOrder = graph.topologicalSort();
if (topologicalOrder) expect(topologicalOrder.map(v => v.id)).toEqual(['A', 'B', 'C']);
});
Directed Graph complex snippet
import {DirectedGraph, DirectedVertex, DirectedEdge, VertexId} from 'data-structure-typed';
class MyVertex extends DirectedVertex {
private _data: string;
get data(): string {
return this._data;
}
set data(value: string) {
this._data = value;
}
constructor(id: VertexId, data: string) {
super(id);
this._data = data;
}
}
class MyEdge extends DirectedEdge {
private _data: string;
get data(): string {
return this._data;
}
set data(value: string) {
this._data = value;
}
constructor(v1: VertexId, v2: VertexId, weight: number, data: string) {
super(v1, v2, weight);
this._data = data;
}
}
describe('DirectedGraph Test3', () => {
const myGraph = new DirectedGraph<MyVertex, MyEdge>();
it('should test graph operations', () => {
const vertex1 = new MyVertex(1, 'data1');
const vertex2 = new MyVertex(2, 'data2');
const vertex3 = new MyVertex(3, 'data3');
const vertex4 = new MyVertex(4, 'data4');
const vertex5 = new MyVertex(5, 'data5');
const vertex6 = new MyVertex(6, 'data6');
const vertex7 = new MyVertex(7, 'data7');
const vertex8 = new MyVertex(8, 'data8');
const vertex9 = new MyVertex(9, 'data9');
myGraph.addVertex(vertex1);
myGraph.addVertex(vertex2);
myGraph.addVertex(vertex3);
myGraph.addVertex(vertex4);
myGraph.addVertex(vertex5);
myGraph.addVertex(vertex6);
myGraph.addVertex(vertex7);
myGraph.addVertex(vertex8);
myGraph.addVertex(vertex9);
myGraph.addEdge(new MyEdge(1, 2, 10, 'edge-data1-2'));
myGraph.addEdge(new MyEdge(2, 1, 20, 'edge-data2-1'));
expect(myGraph.getEdge(1, 2)).toBeTruthy();
expect(myGraph.getEdge(2, 1)).toBeTruthy();
expect(myGraph.getEdge(1, '100')).toBeFalsy();
myGraph.removeEdgeBetween(1, 2);
expect(myGraph.getEdge(1, 2)).toBeFalsy();
myGraph.addEdge(new MyEdge(3, 1, 3, 'edge-data-3-1'));
myGraph.addEdge(new MyEdge(1, 9, 19, 'edge-data1-9'));
myGraph.addEdge(new MyEdge(9, 7, 97, 'edge-data9-7'));
myGraph.addEdge(new MyEdge(7, 9, 79, 'edge-data7-9'));
myGraph.addEdge(new MyEdge(1, 4, 14, 'edge-data1-4'));
myGraph.addEdge(new MyEdge(4, 7, 47, 'edge-data4-7'));
myGraph.addEdge(new MyEdge(1, 2, 12, 'edge-data1-2'));
myGraph.addEdge(new MyEdge(2, 3, 23, 'edge-data2-3'));
myGraph.addEdge(new MyEdge(3, 5, 35, 'edge-data3-5'));
myGraph.addEdge(new MyEdge(5, 7, 57, 'edge-data5-7'));
myGraph.addEdge(new MyEdge(7, 3, 73, 'edge-data7-3'));
const topologicalSorted = myGraph.topologicalSort();
expect(topologicalSorted).toBeNull();
const minPath1to7 = myGraph.getMinPathBetween(1, 7);
expect(minPath1to7).toBeInstanceOf(Array);
if (minPath1to7 && minPath1to7.length > 0) {
expect(minPath1to7).toHaveLength(3);
expect(minPath1to7[0]).toBeInstanceOf(MyVertex);
expect(minPath1to7[0].id).toBe(1);
expect(minPath1to7[1].id).toBe(9);
expect(minPath1to7[2].id).toBe(7);
}
const fordResult1 = myGraph.bellmanFord(1);
expect(fordResult1).toBeTruthy();
expect(fordResult1.hasNegativeCycle).toBeUndefined();
const {distMap, preMap, paths, min, minPath} = fordResult1;
expect(distMap).toBeInstanceOf(Map);
expect(distMap.size).toBe(9);
expect(distMap.get(vertex1)).toBe(0);
expect(distMap.get(vertex2)).toBe(12);
expect(distMap.get(vertex3)).toBe(35);
expect(distMap.get(vertex4)).toBe(14);
expect(distMap.get(vertex5)).toBe(70);
expect(distMap.get(vertex6)).toBe(Infinity);
expect(distMap.get(vertex7)).toBe(61);
expect(distMap.get(vertex8)).toBe(Infinity);
expect(distMap.get(vertex9)).toBe(19);
expect(preMap).toBeInstanceOf(Map);
expect(preMap.size).toBe(0);
expect(paths).toBeInstanceOf(Array);
expect(paths.length).toBe(0);
expect(min).toBe(Infinity);
expect(minPath).toBeInstanceOf(Array);
const floydResult = myGraph.floyd();
expect(floydResult).toBeTruthy();
if (floydResult) {
const {costs, predecessor} = floydResult;
expect(costs).toBeInstanceOf(Array);
expect(costs.length).toBe(9);
expect(costs[0]).toEqual([32, 12, 35, 14, 70, Infinity, 61, Infinity, 19]);
expect(costs[1]).toEqual([20, 32, 23, 34, 58, Infinity, 81, Infinity, 39]);
expect(costs[2]).toEqual([3, 15, 38, 17, 35, Infinity, 64, Infinity, 22]);
expect(costs[3]).toEqual([123, 135, 120, 137, 155, Infinity, 47, Infinity, 126]);
expect(costs[4]).toEqual([133, 145, 130, 147, 165, Infinity, 57, Infinity, 136]);
expect(costs[5]).toEqual([Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity]);
expect(costs[6]).toEqual([76, 88, 73, 90, 108, Infinity, 137, Infinity, 79]);
expect(costs[7]).toEqual([Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity]);
expect(costs[8]).toEqual([173, 185, 170, 187, 205, Infinity, 97, Infinity, 176]);
expect(predecessor).toBeInstanceOf(Array);
expect(predecessor.length).toBe(9);
expect(predecessor[0]).toEqual([vertex2, null, vertex2, null, vertex3, null, vertex4, null, null]);
expect(predecessor[1]).toEqual([null, vertex1, null, vertex1, vertex3, null, vertex4, null, vertex1]);
expect(predecessor[5]).toEqual([null, null, null, null, null, null, null, null, null]);
expect(predecessor[7]).toEqual([null, null, null, null, null, null, null, null, null]);
expect(predecessor[8]).toEqual([vertex7, vertex7, vertex7, vertex7, vertex7, null, null, null, vertex7]);
}
const dijkstraRes12tt = myGraph.dijkstra(1, 2, true, true);
expect(dijkstraRes12tt).toBeTruthy();
if (dijkstraRes12tt) {
const {distMap, minDist, minPath, paths, preMap, seen} = dijkstraRes12tt;
expect(distMap).toBeInstanceOf(Map);
expect(distMap.size).toBe(9);
expect(distMap.get(vertex1)).toBe(0);
expect(distMap.get(vertex2)).toBe(12);
expect(distMap.get(vertex3)).toBe(Infinity);
expect(distMap.get(vertex4)).toBe(14);
expect(distMap.get(vertex5)).toBe(Infinity);
expect(distMap.get(vertex6)).toBe(Infinity);
expect(distMap.get(vertex7)).toBe(Infinity);
expect(distMap.get(vertex8)).toBe(Infinity);
expect(distMap.get(vertex9)).toBe(19);
expect(minDist).toBe(12);
expect(minPath).toBeInstanceOf(Array);
expect(minPath.length).toBe(2);
expect(minPath[0]).toBe(vertex1);
expect(minPath[1]).toBe(vertex2);
expect(paths).toBeInstanceOf(Array);
expect(paths.length).toBe(9);
expect(paths[0]).toBeInstanceOf(Array);
expect(paths[0][0]).toBe(vertex1);
expect(paths[1]).toBeInstanceOf(Array);
expect(paths[1][0]).toBe(vertex1);
expect(paths[1][1]).toBe(vertex2);
expect(paths[2]).toBeInstanceOf(Array);
expect(paths[2][0]).toBe(vertex3);
expect(paths[3]).toBeInstanceOf(Array);
expect(paths[3][0]).toBe(vertex1);
expect(paths[3][1]).toBe(vertex4);
expect(paths[4]).toBeInstanceOf(Array);
expect(paths[4][0]).toBe(vertex5);
expect(paths[5]).toBeInstanceOf(Array);
expect(paths[5][0]).toBe(vertex6);
expect(paths[6]).toBeInstanceOf(Array);
expect(paths[6][0]).toBe(vertex7);
expect(paths[7]).toBeInstanceOf(Array);
expect(paths[7][0]).toBe(vertex8);
expect(paths[8]).toBeInstanceOf(Array);
expect(paths[8][0]).toBe(vertex1);
expect(paths[8][1]).toBe(vertex9);
}
});
});
API docs
data-- AVLTree
- AVLTree
Node - Abstract
Edge - Abstract
Graph - Abstract
Vertex - Array
Deque - BST
- BSTNode
- Binary
Indexed Tree - Binary
Tree - Binary
Tree Node - Character
- Coordinate
Map - Coordinate
Set - Deque
- Directed
Edge - Directed
Graph - Directed
Vertex - Doubly
Linked List - Doubly
Linked List Node - Heap
- Matrix2D
- MatrixNTI2D
- Max
Heap - Max
Priority Queue - Min
Heap - Min
Priority Queue - Navigator
- Object
Deque - Priority
Queue - Queue
- Segment
Tree - Segment
Tree Node - Singly
Linked List - Singly
Linked List Node - Stack
- Tree
Multi Set - Trie
- Trie
Node - Undirected
Edge - Undirected
Graph - Undirected
Vertex - Vector2D
Why
Complexities
performance of Big O
Big O Notation | Type | Computations for 10 elements | Computations for 100 elements | Computations for 1000 elements |
---|---|---|---|---|
O(1) | Constant | 1 | 1 | 1 |
O(log N) | Logarithmic | 3 | 6 | 9 |
O(N) | Linear | 10 | 100 | 1000 |
O(N log N) | n log(n) | 30 | 600 | 9000 |
O(N^2) | Quadratic | 100 | 10000 | 1000000 |
O(2^N) | Exponential | 1024 | 1.26e+29 | 1.07e+301 |
O(N!) | Factorial | 3628800 | 9.3e+157 | 4.02e+2567 |
Data Structure Complexity
Data Structure | Access | Search | Insertion | Deletion | Comments |
---|---|---|---|---|---|
Array | 1 | n | n | n | |
Stack | n | n | 1 | 1 | |
Queue | n | n | 1 | 1 | |
Linked List | n | n | 1 | n | |
Hash Table | - | n | n | n | In case of perfect hash function costs would be O(1) |
Binary Search Tree | n | n | n | n | In case of balanced tree costs would be O(log(n)) |
B-Tree | log(n) | log(n) | log(n) | log(n) | |
Red-Black Tree | log(n) | log(n) | log(n) | log(n) | |
AVL Tree | log(n) | log(n) | log(n) | log(n) | |
Bloom Filter | - | 1 | 1 | - | False positives are possible while searching |
Sorting Complexity
Name | Best | Average | Worst | Memory | Stable | Comments |
---|---|---|---|---|---|---|
Bubble sort | n | n2 | n2 | 1 | Yes | |
Insertion sort | n | n2 | n2 | 1 | Yes | |
Selection sort | n2 | n2 | n2 | 1 | No | |
Heap sort | n log(n) | n log(n) | n log(n) | 1 | No | |
Merge sort | n log(n) | n log(n) | n log(n) | n | Yes | |
Quick sort | n log(n) | n log(n) | n2 | log(n) | No | Quicksort is usually done in-place with O(log(n)) stack space |
Shell sort | n log(n) | depends on gap sequence | n (log(n))2 | 1 | No | |
Counting sort | n + r | n + r | n + r | n + r | Yes | r - biggest number in array |
Radix sort | n * k | n * k | n * k | n + k | Yes | k - length of longest key |