mirror of
https://github.com/zrwusa/data-structure-typed.git
synced 2024-11-14 09:24:05 +00:00
40 KiB
40 KiB
data-structure-typed
为什么
JavaScript和TypeScript的数据结构。
是否羡慕C++ STL (std::)、Python的 collections 和Java的 java.util?
不再需要羡慕了!JavaScript和TypeScript现在拥有 data-structure-typed。
基准测试
与C++ STL相比。API 标准
与ES6和Java对齐。易用性
可与Python媲美。
提供了JS/TS中没有的数据结构
Heap, Binary Tree, RedBlack Tree, Linked List, Deque, Trie, Directed Graph, Undirected Graph, BST, AVL Tree, Priority Queue, Queue, Tree Multiset.
性能超越原生JS/TS
方法名 | 耗时(毫秒) | 数据规模 | 所属标准库 |
---|---|---|---|
Queue.push & shift | 5.83 | 100,000 | data-structure-typed |
Array.push & shift | 2829.59 | 100,000 | 原生JS |
Deque.unshift & shift | 2.44 | 100,000 | data-structure-typed |
Array.unshift & shift | 4750.37 | 100,000 | 原生JS |
HashMap.set | 122.51 | 1,000,000 | data-structure-typed |
Map.set | 223.80 | 1,000,000 | 原生JS |
Set.add | 185.06 | 1,000,000 | 原生JS |
安装和使用
现在你可以在 Node.js 和浏览器环境中使用它
CommonJS:require export.modules =
ESModule: import export
Typescript: import export
UMD: var Deque = dataStructureTyped.Deque
npm
npm i data-structure-typed --save
yarn
yarn add data-structure-typed
import {
BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList,
AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultiMap,
DirectedVertex, AVLTreeNode
} from 'data-structure-typed';
CDN
将下面的代码复制到 HTML 文档的头标签中。
开发环境
<script src='https://cdn.jsdelivr.net/npm/data-structure-typed/dist/umd/data-structure-typed.js'></script>
生产环境
<script src='https://cdn.jsdelivr.net/npm/data-structure-typed/dist/umd/data-structure-typed.min.js'></script>
将下面的代码复制到你的 HTML 的 script 标签中,你就可以开始你的开发了。
const {Heap} = dataStructureTyped;
const {
BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList,
AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultiMap,
DirectedVertex, AVLTreeNode
} = dataStructureTyped;
生动示例
Binary Tree(二叉树)
试一下,或者你可以使用我们的可视化工具运行自己的代码 visual tool
Binary Tree DFS (二叉搜索树深度遍历)
AVL Tree(AVL树)
Tree Multi Map
Matrix
有向图
地图
代码片段
红黑树 代码示例
TS
import {RedBlackTree} from 'data-structure-typed';
const rbTree = new RedBlackTree<number>();
rbTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
rbTree.isAVLBalanced(); // true
rbTree.delete(10);
rbTree.isAVLBalanced(); // true
rbTree.print()
// ___6________
// / \
// ___4_ ___11________
// / \ / \
// _2_ 5 _8_ ____14__
// / \ / \ / \
// 1 3 7 9 12__ 15__
// \ \
// 13 16
JS
import {RedBlackTree} from 'data-structure-typed';
const rbTree = new RedBlackTree();
rbTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
rbTree.isAVLBalanced(); // true
rbTree.delete(10);
rbTree.isAVLBalanced(); // true
rbTree.print()
// ___6________
// / \
// ___4_ ___11________
// / \ / \
// _2_ 5 _8_ ____14__
// / \ / \ / \
// 1 3 7 9 12__ 15__
// \ \
// 13 16
二叉搜索树 (BST) 代码示例
import {BST, BSTNode} from 'data-structure-typed';
const bst = new BST<number>();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16; // true
bst.has(6); // true
const node6 = bst.getNode(6); // BSTNode
bst.getHeight(6) === 2; // true
bst.getHeight() === 5; // true
bst.getDepth(6) === 3; // true
bst.getLeftMost()?.key === 1; // true
bst.delete(6);
bst.get(6); // undefined
bst.isAVLBalanced(); // true
bst.bfs()[0] === 11; // true
bst.print()
// ______________11_____
// / \
// ___3_______ _13_____
// / \ / \
// 1_ _____8____ 12 _15__
// \ / \ / \
// 2 4_ _10 14 16
// \ /
// 5_ 9
// \
// 7
const objBST = new BST<number, {height: number, age: number}>();
objBST.add(11, { "name": "Pablo", "age": 15 });
objBST.add(3, { "name": "Kirk", "age": 1 });
objBST.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5], [
{ "name": "Alice", "age": 15 },
{ "name": "Bob", "age": 1 },
{ "name": "Charlie", "age": 8 },
{ "name": "David", "age": 13 },
{ "name": "Emma", "age": 16 },
{ "name": "Frank", "age": 2 },
{ "name": "Grace", "age": 6 },
{ "name": "Hannah", "age": 9 },
{ "name": "Isaac", "age": 12 },
{ "name": "Jack", "age": 14 },
{ "name": "Katie", "age": 4 },
{ "name": "Liam", "age": 7 },
{ "name": "Mia", "age": 10 },
{ "name": "Noah", "age": 5 }
]
);
objBST.delete(11);
AVL树 代码示例
import {AVLTree} from 'data-structure-typed';
const avlTree = new AVLTree<number>();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced(); // true
avlTree.delete(10);
avlTree.isAVLBalanced(); // true
有向图代码示例
import {DirectedGraph} from 'data-structure-typed';
const graph = new DirectedGraph<string>();
graph.addVertex('A');
graph.addVertex('B');
graph.hasVertex('A'); // true
graph.hasVertex('B'); // true
graph.hasVertex('C'); // false
graph.addEdge('A', 'B');
graph.hasEdge('A', 'B'); // true
graph.hasEdge('B', 'A'); // false
graph.deleteEdgeSrcToDest('A', 'B');
graph.hasEdge('A', 'B'); // false
graph.addVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'C');
const topologicalOrderKeys = graph.topologicalSort(); // ['A', 'B', 'C']
无向图代码示例
import {UndirectedGraph} from 'data-structure-typed';
const graph = new UndirectedGraph<string>();
graph.addVertex('A');
graph.addVertex('B');
graph.addVertex('C');
graph.addVertex('D');
graph.deleteVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'D');
const dijkstraResult = graph.dijkstra('A');
Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.key) // ['A', 'B', 'D']
不同数据结构之间互相转换
const orgArr = [6, 1, 2, 7, 5, 3, 4, 9, 8];
const orgStrArr = ["trie", "trial", "trick", "trip", "tree", "trend", "triangle", "track", "trace", "transmit"];
const entries = [[6, 6], [1, 1], [2, 2], [7, 7], [5, 5], [3, 3], [4, 4], [9, 9], [8, 8]];
const queue = new Queue(orgArr);
queue.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const deque = new Deque(orgArr);
deque.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const sList = new SinglyLinkedList(orgArr);
sList.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const dList = new DoublyLinkedList(orgArr);
dList.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const stack = new Stack(orgArr);
stack.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const minHeap = new MinHeap(orgArr);
minHeap.print();
// [1, 5, 2, 7, 6, 3, 4, 9, 8]
const maxPQ = new MaxPriorityQueue(orgArr);
maxPQ.print();
// [9, 8, 4, 7, 5, 2, 3, 1, 6]
const biTree = new BinaryTree(entries);
biTree.print();
// ___6___
// / \
// ___1_ _2_
// / \ / \
// _7_ 5 3 4
// / \
// 9 8
const bst = new BST(entries);
bst.print();
// _____5___
// / \
// _2_ _7_
// / \ / \
// 1 3_ 6 8_
// \ \
// 4 9
const rbTree = new RedBlackTree(entries);
rbTree.print();
// ___4___
// / \
// _2_ _6___
// / \ / \
// 1 3 5 _8_
// / \
// 7 9
const avl = new AVLTree(entries);
avl.print();
// ___4___
// / \
// _2_ _6___
// / \ / \
// 1 3 5 _8_
// / \
// 7 9
const treeMulti = new TreeMultiMap(entries);
treeMulti.print();
// ___4___
// / \
// _2_ _6___
// / \ / \
// 1 3 5 _8_
// / \
// 7 9
const hm = new HashMap(entries);
hm.print()
// [[6, 6], [1, 1], [2, 2], [7, 7], [5, 5], [3, 3], [4, 4], [9, 9], [8, 8]]
const rbTreeH = new RedBlackTree(hm);
rbTreeH.print();
// ___4___
// / \
// _2_ _6___
// / \ / \
// 1 3 5 _8_
// / \
// 7 9
const pq = new MinPriorityQueue(orgArr);
pq.print();
// [1, 5, 2, 7, 6, 3, 4, 9, 8]
const bst1 = new BST(pq);
bst1.print();
// _____5___
// / \
// _2_ _7_
// / \ / \
// 1 3_ 6 8_
// \ \
// 4 9
const dq1 = new Deque(orgArr);
dq1.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const rbTree1 = new RedBlackTree(dq1);
rbTree1.print();
// _____5___
// / \
// _2___ _7___
// / \ / \
// 1 _4 6 _9
// / /
// 3 8
const trie2 = new Trie(orgStrArr);
trie2.print();
// ['trie', 'trial', 'triangle', 'trick', 'trip', 'tree', 'trend', 'track', 'trace', 'transmit']
const heap2 = new Heap(trie2, { comparator: (a, b) => Number(a) - Number(b) });
heap2.print();
// ['transmit', 'trace', 'tree', 'trend', 'track', 'trial', 'trip', 'trie', 'trick', 'triangle']
const dq2 = new Deque(heap2);
dq2.print();
// ['transmit', 'trace', 'tree', 'trend', 'track', 'trial', 'trip', 'trie', 'trick', 'triangle']
const entries2 = dq2.map((el, i) => [i, el]);
const avl2 = new AVLTree(entries2);
avl2.print();
// ___3_______
// / \
// _1_ ___7_
// / \ / \
// 0 2 _5_ 8_
// / \ \
// 4 6 9
API 文档 & 演示
包含的数据结构
Data Structure | Unit Test | Performance Test | API Docs |
---|---|---|---|
Binary Tree | View | ||
Binary Search Tree (BST) | View | ||
AVL Tree | View | ||
Red Black Tree | View | ||
Tree Multimap | View | ||
Heap | View | ||
Priority Queue | View | ||
Max Priority Queue | View | ||
Min Priority Queue | View | ||
Trie | View | ||
Graph | View | ||
Directed Graph | View | ||
Undirected Graph | View | ||
Queue | View | ||
Deque | View | ||
Hash Map | View | ||
Linked List | View | ||
Singly Linked List | View | ||
Doubly Linked List | View | ||
Stack | View | ||
Segment Tree | View | ||
Binary Indexed Tree | View |
不同编程语言中的数据结构对应关系
Data Structure Typed | C++ STL | java.util | Python collections |
---|---|---|---|
Heap<E> | priority_queue<T> | PriorityQueue<E> | heapq |
Deque<E> | deque<T> | ArrayDeque<E> | deque |
Queue<E> | queue<T> | Queue<E> | - |
HashMap<K, V> | unordered_map<K, V> | HashMap<K, V> | defaultdict |
DoublyLinkedList<E> | list<T> | LinkedList<E> | - |
SinglyLinkedList<E> | - | - | - |
BinaryTree<K, V> | - | - | - |
BST<K, V> | - | - | - |
RedBlackTree<E> | set<T> | TreeSet<E> | - |
RedBlackTree<K, V> | map<K, V> | TreeMap<K, V> | - |
TreeMultiMap<K, V> | multimap<K, V> | - | - |
TreeMultiMap<E> | multiset<T> | - | - |
Trie | - | - | - |
DirectedGraph<V, E> | - | - | - |
UndirectedGraph<V, E> | - | - | - |
PriorityQueue<E> | priority_queue<T> | PriorityQueue<E> | - |
Array<E> | vector<T> | ArrayList<E> | list |
Stack<E> | stack<T> | Stack<E> | - |
HashMap<E> | unordered_set<T> | HashSet<E> | set |
- | unordered_multiset | - | Counter |
LinkedHashMap<K, V> | - | LinkedHashMap<K, V> | OrderedDict |
- | unordered_multimap<K, V> | - | - |
- | bitset<N> | - | - |
内建的经典算法
算法 | 功能描述 | 迭代类型 |
---|---|---|
二叉树深度优先搜索(DFS) | 以深度优先的方式遍历二叉树,从根节点开始,首先访问左子树,然后是右子树,使用递归。 | 递归 + 迭代 |
二叉树广度优先搜索(BFS) | 以广度优先的方式遍历二叉树,从根节点开始,逐层从左到右访问节点。 | 迭代 |
图的深度优先搜索 | 以深度优先的方式遍历图,从给定节点开始,尽可能深地沿一条路径探索,然后回溯以探索其他路径。用于寻找连通分量、路径等。 | 递归 + 迭代 |
二叉树Morris遍历 | Morris遍历是一种中序遍历二叉树的算法,空间复杂度为O(1)。它允许在没有额外栈或递归的情况下遍历树。 | 迭代 |
图的广度优先搜索 | 以广度优先的方式遍历图,从给定节点开始,首先访问与起始节点直接相连的节点,然后逐层扩展。用于寻找最短路径等。 | 递归 + 迭代 |
图的Tarjan算法 | 在图中找到强连通分量,通常使用深度优先搜索实现。 | 递归 |
图的Bellman-Ford算法 | 从单一源点找到最短路径,可以处理负权边 | 迭代 |
图的Dijkstra算法 | 从单一源点找到最短路径,不能处理负权边 | 迭代 |
图的Floyd-Warshall算法 | 找到所有节点对之间的最短路径 | 迭代 |
图的getCycles | 在图中找到所有循环或检测循环的存在。 | 递归 |
图的getCutVertices | 在图中找到切点,这些是移除后会增加图中连通分量数量的节点。 | 递归 |
图的getSCCs | 在图中找到强连通分量,这些是任意两个节点都可以相互到达的子图。 | 递归 |
图的getBridges | 在图中找到桥,这些是移除后会增加图中连通分量数量的边。 | 递归 |
图的拓扑排序 | 对有向无环图(DAG)进行拓扑排序,以找到节点的线性顺序,使得所有有向边都从较早的节点指向较晚的节点。 | 递归 |
软件工程标准
严格尊重计算机科学理论和软件开发规范,我们的LinkedList就是传统意义的LinkedList数据结构,而不是用Deque去代替以便标榜性能测试数据。当然我们也同时实现了基于动态数组的Deque。
原则 | 描述 |
---|---|
实用性 | 遵循ES6和ESNext标准,提供统一且考虑周到的可选参数,简化方法名称。 |
可扩展性 | 遵循OOP(面向对象编程)原则,允许所有数据结构继承。 |
模块化 | 包括数据结构模块化和独立的NPM包。 |
效率 | 所有方法都提供时间和空间复杂度,可与原生JS性能相媲美。 |
可维护性 | 遵循开源社区开发标准,完整文档,持续集成,并遵循TDD(测试驱动开发)模式。 |
可测试性 | 自动化和定制单元测试、性能测试和集成测试。 |
可移植性 | 计划移植到Java、Python和C++,目前已完成80%。 |
可复用性 | 完全解耦,最小化副作用,遵循OOP。 |
安全性 | 精心设计的成员变量和方法的安全性。读写分离。数据结构软件不需要考虑其他安全方面。 |
可扩展性 | 数据结构软件不涉及负载问题。 |
基准测试
avl-tree
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
10,000 add randomly | 72.48 | 13.80 | 0.03 |
10,000 add & delete randomly | 144.14 | 6.94 | 0.03 |
10,000 addMany | 69.71 | 14.35 | 0.02 |
10,000 get | 54.21 | 18.45 | 0.01 |
binary-tree
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000 add randomly | 15.84 | 63.14 | 0.00 |
1,000 add & delete randomly | 24.62 | 40.62 | 0.00 |
1,000 addMany | 17.85 | 56.01 | 0.00 |
1,000 get | 20.83 | 48.00 | 0.00 |
1,000 has | 20.78 | 48.13 | 0.00 |
1,000 dfs | 186.06 | 5.37 | 0.02 |
1,000 bfs | 66.58 | 15.02 | 0.02 |
1,000 morris | 298.23 | 3.35 | 0.02 |
bst
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
10,000 add randomly | 55.04 | 18.17 | 0.01 |
10,000 add & delete randomly | 129.85 | 7.70 | 0.01 |
10,000 addMany | 50.40 | 19.84 | 0.01 |
10,000 get | 63.39 | 15.78 | 0.01 |
rb-tree
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
100,000 add | 113.25 | 8.83 | 0.02 |
100,000 add & delete randomly | 305.28 | 3.28 | 0.03 |
100,000 getNode | 73.20 | 13.66 | 0.03 |
100,000 add & iterator | 159.80 | 6.26 | 0.06 |
comparison
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
SRC PQ 10,000 add | 0.17 | 5872.02 | 4.08e-5 |
CJS PQ 10,000 add | 0.20 | 4961.22 | 1.14e-4 |
MJS PQ 10,000 add | 0.74 | 1351.47 | 2.98e-4 |
SRC PQ 10,000 add & pop | 4.62 | 216.49 | 0.00 |
CJS PQ 10,000 add & pop | 4.36 | 229.40 | 0.00 |
MJS PQ 10,000 add & pop | 3.92 | 255.23 | 0.00 |
directed-graph
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000 addVertex | 0.12 | 8557.70 | 2.46e-5 |
1,000 addEdge | 7.37 | 135.70 | 0.00 |
1,000 getVertex | 0.05 | 1.91e+4 | 1.12e-5 |
1,000 getEdge | 22.75 | 43.96 | 0.00 |
tarjan | 196.98 | 5.08 | 0.01 |
tarjan all | 217.25 | 4.60 | 0.03 |
topologicalSort | 177.30 | 5.64 | 0.02 |
hash-map
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 set | 153.74 | 6.50 | 0.07 |
1,000,000 Map set | 330.02 | 3.03 | 0.16 |
1,000,000 Set add | 258.64 | 3.87 | 0.06 |
1,000,000 set & get | 138.80 | 7.20 | 0.06 |
1,000,000 Map set & get | 352.63 | 2.84 | 0.05 |
1,000,000 Set add & has | 217.97 | 4.59 | 0.02 |
1,000,000 ObjKey set & get | 414.87 | 2.41 | 0.06 |
1,000,000 Map ObjKey set & get | 389.17 | 2.57 | 0.07 |
1,000,000 Set ObjKey add & has | 352.67 | 2.84 | 0.03 |
heap
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
100,000 add & pop | 90.67 | 11.03 | 0.02 |
100,000 add & dfs | 40.30 | 24.81 | 0.01 |
10,000 fib add & pop | 414.94 | 2.41 | 0.02 |
doubly-linked-list
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 push | 290.62 | 3.44 | 0.10 |
1,000,000 unshift | 253.88 | 3.94 | 0.10 |
1,000,000 unshift & shift | 259.65 | 3.85 | 0.14 |
1,000,000 addBefore | 463.16 | 2.16 | 0.10 |
singly-linked-list
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 push & shift | 250.27 | 4.00 | 0.08 |
10,000 push & pop | 261.13 | 3.83 | 0.03 |
10,000 addBefore | 282.46 | 3.54 | 0.02 |
max-priority-queue
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
10,000 refill & poll | 10.49 | 95.29 | 0.00 |
priority-queue
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
100,000 add & pop | 110.63 | 9.04 | 0.01 |
deque
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 push | 15.89 | 62.92 | 0.00 |
1,000,000 push & pop | 26.45 | 37.81 | 0.01 |
1,000,000 push & shift | 27.52 | 36.34 | 0.00 |
1,000,000 unshift & shift | 28.82 | 34.70 | 0.01 |
queue
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 push | 51.21 | 19.53 | 0.02 |
1,000,000 push & shift | 105.56 | 9.47 | 0.05 |
stack
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 push | 43.57 | 22.95 | 0.01 |
1,000,000 push & pop | 55.18 | 18.12 | 0.01 |
trie
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
100,000 push | 54.08 | 18.49 | 0.01 |
100,000 getWords | 77.77 | 12.86 | 0.02 |