Data Structure Typed
Data Structures of Javascript & TypeScript.
A library that provides a variety of JavaScript and TypeScript data structures, as well as implementations of some
classic algorithms.
Do you envy languages like C++ with std, Python with collections, and Java with java.util? Well, no need to envy anymore! JavaScript and TypeScript now have data-structure-typed
Built-in classic algorithms
DFS(Depth-First Search), DFSIterative, BFS(Breadth-First Search), morris, Bellman-Ford Algorithm, Dijkstra's Algorithm,
Floyd-Warshall Algorithm, Tarjan's Algorithm.
Installation and Usage
npm
npm i data-structure-typed --save
yarn
yarn add data-structure-typed
CDN
<script src='https://cdn.jsdelivr.net/npm/data-structure-typed/umd/bundle.min.js'></script>
const {AVLTree} = dataStructureTyped;
const {
Heap,
MinHeap,
SinglyLinkedList,
Stack,
AVLTreeNode,
BST,
Trie,
DirectedGraph,
DirectedVertex,
TreeMultiset
} = dataStructureTyped;
API docs & Examples
API Docs
Live Examples
Examples Repository
Code Snippet
Binary Search Tree (BST) snippet
TS
import {BST, BSTNode} from 'data-structure-typed';
const bst = new BST();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16; // true
bst.has(6); // true
const node6 = bst.get(6); // BSTNode
bst.getHeight(6) === 2; // true
bst.getHeight() === 5; // true
bst.getDepth(6) === 3; // true
bst.getLeftMost()?.id === 1; // true
bst.remove(6);
bst.get(6); // null
bst.isAVLBalanced(); // true
bst.BFS()[0] === 11; // true
const objBST = new BST<BSTNode<{id: number, keyA: number}>>();
objBST.add(11, {id: 11, keyA: 11});
objBST.add(3, {id: 3, keyA: 3});
objBST.addMany([{id: 15, keyA: 15}, {id: 1, keyA: 1}, {id: 8, keyA: 8},
{id: 13, keyA: 13}, {id: 16, keyA: 16}, {id: 2, keyA: 2},
{id: 6, keyA: 6}, {id: 9, keyA: 9}, {id: 12, keyA: 12},
{id: 14, keyA: 14}, {id: 4, keyA: 4}, {id: 7, keyA: 7},
{id: 10, keyA: 10}, {id: 5, keyA: 5}]);
objBST.remove(11);
JS
const {BST, BSTNode} = require('data-structure-typed');
const bst = new BST();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16; // true
bst.has(6); // true
const node6 = bst.get(6);
bst.getHeight(6) === 2; // true
bst.getHeight() === 5; // true
bst.getDepth(6) === 3; // true
const leftMost = bst.getLeftMost();
leftMost?.id === 1; // true
expect(leftMost?.id).toBe(1);
bst.remove(6);
bst.get(6); // null
bst.isAVLBalanced(); // true or false
const bfsIDs = bst.BFS();
bfsIDs[0] === 11; // true
expect(bfsIDs[0]).toBe(11);
const objBST = new BST();
objBST.add(11, {id: 11, keyA: 11});
objBST.add(3, {id: 3, keyA: 3});
objBST.addMany([{id: 15, keyA: 15}, {id: 1, keyA: 1}, {id: 8, keyA: 8},
{id: 13, keyA: 13}, {id: 16, keyA: 16}, {id: 2, keyA: 2},
{id: 6, keyA: 6}, {id: 9, keyA: 9}, {id: 12, keyA: 12},
{id: 14, keyA: 14}, {id: 4, keyA: 4}, {id: 7, keyA: 7},
{id: 10, keyA: 10}, {id: 5, keyA: 5}]);
objBST.remove(11);
const avlTree = new AVLTree();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced(); // true
avlTree.remove(10);
avlTree.isAVLBalanced(); // true
AVLTree snippet
TS
import {AVLTree} from 'data-structure-typed';
const avlTree = new AVLTree();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced(); // true
avlTree.remove(10);
avlTree.isAVLBalanced(); // true
JS
const {AVLTree} = require('data-structure-typed');
const avlTree = new AVLTree();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced(); // true
avlTree.remove(10);
avlTree.isAVLBalanced(); // true
Directed Graph simple snippet
TS or JS
import {DirectedGraph} from 'data-structure-typed';
const graph = new DirectedGraph();
graph.addVertex('A');
graph.addVertex('B');
graph.hasVertex('A'); // true
graph.hasVertex('B'); // true
graph.hasVertex('C'); // false
graph.addEdge('A', 'B');
graph.hasEdge('A', 'B'); // true
graph.hasEdge('B', 'A'); // false
graph.removeEdgeSrcToDest('A', 'B');
graph.hasEdge('A', 'B'); // false
graph.addVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'C');
const topologicalOrderIds = graph.topologicalSort(); // ['A', 'B', 'C']
Undirected Graph snippet
TS or JS
import {UndirectedGraph} from 'data-structure-typed';
const graph = new UndirectedGraph();
graph.addVertex('A');
graph.addVertex('B');
graph.addVertex('C');
graph.addVertex('D');
graph.removeVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'D');
const dijkstraResult = graph.dijkstra('A');
Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.id) // ['A', 'B', 'D']
Data Structures
Code design
By strictly adhering to object-oriented design (BinaryTree -> BST -> AVLTree -> TreeMultiset), you can seamlessly
inherit the existing data structures to implement the customized ones you need. Object-oriented design stands as the
optimal approach to data structure design.
Complexities
performance of Big O
Big O Notation |
Type |
Computations for 10 elements |
Computations for 100 elements |
Computations for 1000 elements |
O(1) |
Constant |
1 |
1 |
1 |
O(log N) |
Logarithmic |
3 |
6 |
9 |
O(N) |
Linear |
10 |
100 |
1000 |
O(N log N) |
n log(n) |
30 |
600 |
9000 |
O(N^2) |
Quadratic |
100 |
10000 |
1000000 |
O(2^N) |
Exponential |
1024 |
1.26e+29 |
1.07e+301 |
O(N!) |
Factorial |
3628800 |
9.3e+157 |
4.02e+2567 |
Data Structure Complexity
Data Structure |
Access |
Search |
Insertion |
Deletion |
Comments |
Array |
1 |
n |
n |
n |
|
Stack |
n |
n |
1 |
1 |
|
Queue |
n |
n |
1 |
1 |
|
Linked List |
n |
n |
1 |
n |
|
Hash Table |
- |
n |
n |
n |
In case of perfect hash function costs would be O(1) |
Binary Search Tree |
n |
n |
n |
n |
In case of balanced tree costs would be O(log(n)) |
B-Tree |
log(n) |
log(n) |
log(n) |
log(n) |
|
Red-Black Tree |
log(n) |
log(n) |
log(n) |
log(n) |
|
AVL Tree |
log(n) |
log(n) |
log(n) |
log(n) |
|
Bloom Filter |
- |
1 |
1 |
- |
False positives are possible while searching |
Sorting Complexity
Name |
Best |
Average |
Worst |
Memory |
Stable |
Comments |
Bubble sort |
n |
n2 |
n2 |
1 |
Yes |
|
Insertion sort |
n |
n2 |
n2 |
1 |
Yes |
|
Selection sort |
n2 |
n2 |
n2 |
1 |
No |
|
Heap sort |
n log(n) |
n log(n) |
n log(n) |
1 |
No |
|
Merge sort |
n log(n) |
n log(n) |
n log(n) |
n |
Yes |
|
Quick sort |
n log(n) |
n log(n) |
n2 |
log(n) |
No |
Quicksort is usually done in-place with O(log(n)) stack space |
Shell sort |
n log(n) |
depends on gap sequence |
n (log(n))2 |
1 |
No |
|
Counting sort |
n + r |
n + r |
n + r |
n + r |
Yes |
r - biggest number in array |
Radix sort |
n * k |
n * k |
n * k |
n + k |
Yes |
k - length of longest key |
Standard library data structure comparison
Data Structure |
C++ std |
Data Structure Typed |
java.util |
Python collections |
Dynamic Array |
std::vector<T> |
Array<E> |
ArrayList<E> |
list |
Linked List |
std::list<T> |
DoublyLinkedList<E> |
LinkedList<E> |
deque |
Set |
std::set<T> |
Set |
HashSet<E> |
set |
Map |
std::map<K, V> |
Map |
HashMap<K, V> |
dict |
Unordered Map |
std::unordered_map<K, V> |
N/A |
HashMap<K, V> |
defaultdict |
Unordered Set |
std::unordered_set<T> |
N/A |
HashSet<E> |
N/A |
Queue |
std::queue<T> |
Queue |
Queue<E> |
N/A |
Priority Queue |
std::priority_queue<T> |
PriorityQueue |
PriorityQueue<E> |
N/A |
Stack |
std::stack<T> |
Stack |
Stack<E> |
N/A |
Bitset |
std::bitset<N> |
N/A |
N/A |
N/A |
Deque |
std::deque<T> |
Deque |
N/A |
N/A |
Multiset |
std::multiset<T> |
N/A |
N/A |
N/A |
Multimap |
std::multimap<K, V> |
N/A |
N/A |
N/A |
Unordered Multiset |
std::unordered_multiset |
N/A |
Counter |
N/A |
Ordered Dictionary |
N/A |
Map |
N/A |
OrderedDict |
Double-Ended Queue (Deque) |
std::deque<T> |
Deque |
N/A |
N/A |
Linked Hash Set |
N/A |
N/A |
LinkedHashSet<E> |
N/A |
Linked Hash Map |
N/A |
N/A |
LinkedHashMap<K, V> |
N/A |
Sorted Set |
N/A |
AVLTree, RBTree |
TreeSet<E> |
N/A |
Sorted Map |
N/A |
AVLTree, RBTree |
TreeMap<K, V> |
N/A |
Tree Set |
std::set |
AVLTree, RBTree |
TreeSet<E> |
N/A |
Persistent Collections |
N/A |
N/A |
N/A |
N/A |
unordered multiset |
unordered multiset<T> |
N/A |
N/A |
N/A |
Unordered Multimap |
std::unordered_multimap<K, V> |
N/A |
N/A |
N/A |