Establish a unified code editor encoding standard by .editorconfig file.

This commit is contained in:
Revone 2023-09-12 11:15:20 +08:00
parent 450f051138
commit 773c970667
51 changed files with 8006 additions and 7977 deletions

15
.editorconfig Normal file
View file

@ -0,0 +1,15 @@
# Editor configuration, see http://editorconfig.org
root = true
[*]
charset = utf-8
end_of_line = lf
indent_style = space
indent_size = 2
insert_final_newline = true
trim_trailing_whitespace = true
[*.md]
max_line_length = off
trim_trailing_whitespace = false
[*.yml]
[*.{yml,yaml}]
indent_size = 2

4
.gitignore vendored
View file

@ -12,4 +12,6 @@ __tests__/
notes/
docs/
backup/
backup/
.editorconfig

View file

@ -6,9 +6,10 @@
/docs
/backup
.editorconfig
.dependency-cruiser.js
jest.config.js
package-lock.json
rename-clear-files.sh
tsconfig.json
webpack.config.js
webpack.config.js

File diff suppressed because it is too large Load diff

View file

@ -10,292 +10,292 @@ import type {AVLTreeNodeNested, AVLTreeOptions, BinaryTreeDeletedResult, BinaryT
import {IAVLTree, IAVLTreeNode} from '../../interfaces';
export class AVLTreeNode<T = any, NEIGHBOR extends AVLTreeNode<T, NEIGHBOR> = AVLTreeNodeNested<T>> extends BSTNode<T, NEIGHBOR> implements IAVLTreeNode<T, NEIGHBOR> {
constructor(id: BinaryTreeNodeId, val?: T) {
super(id, val);
}
constructor(id: BinaryTreeNodeId, val?: T) {
super(id, val);
}
}
export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends BST<N> implements IAVLTree<N> {
/**
* This is a constructor function for an AVL tree data structure in TypeScript.
* @param {AVLTreeOptions} [options] - The `options` parameter is an optional object that can be passed to the
* constructor of the AVLTree class. It allows you to customize the behavior of the AVL tree by providing different
* options.
*/
constructor(options?: AVLTreeOptions) {
super(options);
}
/**
* This is a constructor function for an AVL tree data structure in TypeScript.
* @param {AVLTreeOptions} [options] - The `options` parameter is an optional object that can be passed to the
* constructor of the AVLTree class. It allows you to customize the behavior of the AVL tree by providing different
* options.
*/
constructor(options?: AVLTreeOptions) {
super(options);
}
/**
* The function creates a new AVL tree node with the given id and value.
* @param {BinaryTreeNodeId} id - The `id` parameter is the identifier for the binary tree node. It is used to uniquely
* identify each node in the tree.
* @param [val] - The `val` parameter is an optional value that can be assigned to the node. It represents the value
* that will be stored in the node.
* @returns a new AVLTreeNode object with the specified id and value.
*/
override createNode(id: BinaryTreeNodeId, val?: N['val']): N {
return new AVLTreeNode<N['val'], N>(id, val) as N;
}
/**
* The function creates a new AVL tree node with the given id and value.
* @param {BinaryTreeNodeId} id - The `id` parameter is the identifier for the binary tree node. It is used to uniquely
* identify each node in the tree.
* @param [val] - The `val` parameter is an optional value that can be assigned to the node. It represents the value
* that will be stored in the node.
* @returns a new AVLTreeNode object with the specified id and value.
*/
override createNode(id: BinaryTreeNodeId, val?: N['val']): N {
return new AVLTreeNode<N['val'], N>(id, val) as N;
}
/**
* The function overrides the add method of a binary tree node and balances the tree after inserting a new node.
* @param {BinaryTreeNodeId} id - The `id` parameter is the identifier of the binary tree node that we want to add.
* @param [val] - The `val` parameter is an optional value that can be assigned to the node being added. It is of type
* `N['val']`, which means it should be of the same type as the `val` property of the nodes in the binary tree.
* @returns The method is returning the inserted node, or null or undefined if the insertion was not successful.
*/
override add(id: BinaryTreeNodeId, val?: N['val']): N | null | undefined {
// TODO support node as a param
const inserted = super.add(id, val);
if (inserted) this.balancePath(inserted);
return inserted;
}
/**
* The function overrides the add method of a binary tree node and balances the tree after inserting a new node.
* @param {BinaryTreeNodeId} id - The `id` parameter is the identifier of the binary tree node that we want to add.
* @param [val] - The `val` parameter is an optional value that can be assigned to the node being added. It is of type
* `N['val']`, which means it should be of the same type as the `val` property of the nodes in the binary tree.
* @returns The method is returning the inserted node, or null or undefined if the insertion was not successful.
*/
override add(id: BinaryTreeNodeId, val?: N['val']): N | null | undefined {
// TODO support node as a param
const inserted = super.add(id, val);
if (inserted) this.balancePath(inserted);
return inserted;
}
/**
* The function overrides the remove method of the Binary Search Tree class, performs the removal operation, and
* then balances the tree if necessary.
* @param {BinaryTreeNodeId} id - The `id` parameter represents the identifier of the binary tree node that needs to be
* removed from the AVL tree.
* @param {boolean} [isUpdateAllLeftSum] - The `isUpdateAllLeftSum` parameter is an optional boolean parameter that
* determines whether the left sum of all nodes in the AVL tree should be updated after removing a node. If
* `isUpdateAllLeftSum` is set to `true`, the left sum of all nodes will be recalculated.
* @returns The method is returning an array of `AVLTreeDeleted<N>` objects.
*/
override remove(id: BinaryTreeNodeId, isUpdateAllLeftSum?: boolean): BinaryTreeDeletedResult<N>[] {
const deletedResults = super.remove(id, isUpdateAllLeftSum);
for (const {needBalanced} of deletedResults) {
if (needBalanced) {
this.balancePath(needBalanced);
}
}
return deletedResults;
/**
* The function overrides the remove method of the Binary Search Tree class, performs the removal operation, and
* then balances the tree if necessary.
* @param {BinaryTreeNodeId} id - The `id` parameter represents the identifier of the binary tree node that needs to be
* removed from the AVL tree.
* @param {boolean} [isUpdateAllLeftSum] - The `isUpdateAllLeftSum` parameter is an optional boolean parameter that
* determines whether the left sum of all nodes in the AVL tree should be updated after removing a node. If
* `isUpdateAllLeftSum` is set to `true`, the left sum of all nodes will be recalculated.
* @returns The method is returning an array of `AVLTreeDeleted<N>` objects.
*/
override remove(id: BinaryTreeNodeId, isUpdateAllLeftSum?: boolean): BinaryTreeDeletedResult<N>[] {
const deletedResults = super.remove(id, isUpdateAllLeftSum);
for (const {needBalanced} of deletedResults) {
if (needBalanced) {
this.balancePath(needBalanced);
}
}
return deletedResults;
}
/**
* The balance factor of a given AVL tree node is calculated by subtracting the height of its left subtree from the
* height of its right subtree.
* @param node - The parameter "node" is of type N, which represents a node in an AVL tree.
* @returns The balance factor of the given AVL tree node.
*/
balanceFactor(node: N): number {
if (!node.right) // node has no right subtree
return -node.height;
else if (!node.left) // node has no left subtree
return +node.height;
else
return node.right.height - node.left.height;
}
/**
* The balance factor of a given AVL tree node is calculated by subtracting the height of its left subtree from the
* height of its right subtree.
* @param node - The parameter "node" is of type N, which represents a node in an AVL tree.
* @returns The balance factor of the given AVL tree node.
*/
balanceFactor(node: N): number {
if (!node.right) // node has no right subtree
return -node.height;
else if (!node.left) // node has no left subtree
return +node.height;
else
return node.right.height - node.left.height;
}
/**
* The function updates the height of a node in an AVL tree based on the heights of its left and right subtrees.
* @param node - The parameter `node` is an AVLTreeNode object, which represents a node in an AVL tree.
*/
updateHeight(node: N): void {
if (!node.left && !node.right) // node is a leaf
node.height = 0;
else if (!node.left) {
// node has no left subtree
const rightHeight = node.right ? node.right.height : 0;
node.height = 1 + rightHeight;
} else if (!node.right) // node has no right subtree
node.height = 1 + node.left.height;
else
node.height = 1 + Math.max(node.right.height, node.left.height);
}
/**
* The function updates the height of a node in an AVL tree based on the heights of its left and right subtrees.
* @param node - The parameter `node` is an AVLTreeNode object, which represents a node in an AVL tree.
*/
updateHeight(node: N): void {
if (!node.left && !node.right) // node is a leaf
node.height = 0;
else if (!node.left) {
// node has no left subtree
const rightHeight = node.right ? node.right.height : 0;
node.height = 1 + rightHeight;
} else if (!node.right) // node has no right subtree
node.height = 1 + node.left.height;
else
node.height = 1 + Math.max(node.right.height, node.left.height);
}
/**
* The `balancePath` function balances the AVL tree by performing appropriate rotations based on the balance factor of
* each node in the path from the given node to the root.
* @param node - The `node` parameter is an AVLTreeNode object, which represents a node in an AVL tree.
*/
balancePath(node: N): void {
const path = this.getPathToRoot(node);
for (let i = path.length - 1; i >= 0; i--) {
const A = path[i];
this.updateHeight(A);
switch (this.balanceFactor(A)) {
case -2:
if (A && A.left) {
if (this.balanceFactor(A.left) <= 0) {
this.balanceLL(A); // Perform LL rotation
} else {
this.balanceLR(A); // Perform LR rotation
}
}
break;
case +2:
if (A && A.right) {
if (this.balanceFactor(A.right) >= 0) {
this.balanceRR(A); // Perform RR rotation
} else {
this.balanceRL(A); // Perform RL rotation
}
}
}
}
}
/**
* The `balanceLL` function performs a left-left rotation on an AVL tree to balance it.
* @param A - The parameter A is an AVLTreeNode object.
*/
balanceLL(A: N): void {
const parentOfA = A.parent;
const B = A.left; // A is left-heavy and B is left-heavy
A.parent = B;
if (B && B.right) {
B.right.parent = A;
}
if (B) B.parent = parentOfA;
if (A === this.root) {
if (B) this._setRoot(B);
} else {
if (parentOfA?.left === A) {
parentOfA.left = B;
/**
* The `balancePath` function balances the AVL tree by performing appropriate rotations based on the balance factor of
* each node in the path from the given node to the root.
* @param node - The `node` parameter is an AVLTreeNode object, which represents a node in an AVL tree.
*/
balancePath(node: N): void {
const path = this.getPathToRoot(node);
for (let i = path.length - 1; i >= 0; i--) {
const A = path[i];
this.updateHeight(A);
switch (this.balanceFactor(A)) {
case -2:
if (A && A.left) {
if (this.balanceFactor(A.left) <= 0) {
this.balanceLL(A); // Perform LL rotation
} else {
if (parentOfA) parentOfA.right = B;
this.balanceLR(A); // Perform LR rotation
}
}
}
break;
case +2:
if (A && A.right) {
if (this.balanceFactor(A.right) >= 0) {
this.balanceRR(A); // Perform RR rotation
} else {
this.balanceRL(A); // Perform RL rotation
}
}
}
}
}
if (B) {
A.left = B.right; // Make T2 the left subtree of A
B.right = A; // Make A the left child of B
}
this.updateHeight(A);
if (B) this.updateHeight(B);
/**
* The `balanceLL` function performs a left-left rotation on an AVL tree to balance it.
* @param A - The parameter A is an AVLTreeNode object.
*/
balanceLL(A: N): void {
const parentOfA = A.parent;
const B = A.left; // A is left-heavy and B is left-heavy
A.parent = B;
if (B && B.right) {
B.right.parent = A;
}
if (B) B.parent = parentOfA;
if (A === this.root) {
if (B) this._setRoot(B);
} else {
if (parentOfA?.left === A) {
parentOfA.left = B;
} else {
if (parentOfA) parentOfA.right = B;
}
}
/**
* The `balanceLR` function performs a left-right rotation to balance an AVL tree.
* @param A - A is an AVLTreeNode object.
*/
balanceLR(A: N): void {
const parentOfA = A.parent;
const B = A.left; // A is left-heavy
let C = null;
if (B) {
C = B.right;// B is right-heavy
}
if (A) A.parent = C;
if (B) B.parent = C;
if (B) {
A.left = B.right; // Make T2 the left subtree of A
B.right = A; // Make A the left child of B
}
this.updateHeight(A);
if (B) this.updateHeight(B);
}
if (C) {
if (C.left) {
C.left.parent = B;
}
if (C.right) {
C.right.parent = A;
}
C.parent = parentOfA;
}
/**
* The `balanceLR` function performs a left-right rotation to balance an AVL tree.
* @param A - A is an AVLTreeNode object.
*/
balanceLR(A: N): void {
const parentOfA = A.parent;
const B = A.left; // A is left-heavy
let C = null;
if (B) {
C = B.right;// B is right-heavy
}
if (A) A.parent = C;
if (B) B.parent = C;
if (A === this.root) {
if (C) this._setRoot(C);
if (C) {
if (C.left) {
C.left.parent = B;
}
if (C.right) {
C.right.parent = A;
}
C.parent = parentOfA;
}
if (A === this.root) {
if (C) this._setRoot(C);
} else {
if (parentOfA) {
if (parentOfA.left === A) {
parentOfA.left = C;
} else {
if (parentOfA) {
if (parentOfA.left === A) {
parentOfA.left = C;
} else {
parentOfA.right = C;
}
}
parentOfA.right = C;
}
if (C) {
A.left = C.right; // Make T3 the left subtree of A
if (B) B.right = C.left; // Make T2 the right subtree of B
C.left = B;
C.right = A;
}
this.updateHeight(A); // Adjust heights
B && this.updateHeight(B);
C && this.updateHeight(C);
}
}
/**
* The `balanceRR` function performs a right-right rotation on an AVL tree to balance it.
* @param A - The parameter A is an AVLTreeNode object.
*/
balanceRR(A: N): void {
const parentOfA = A.parent;
const B = A.right; // A is right-heavy and B is right-heavy
A.parent = B;
if (B) {
if (B.left) {
B.left.parent = A;
}
B.parent = parentOfA;
}
if (C) {
A.left = C.right; // Make T3 the left subtree of A
if (B) B.right = C.left; // Make T2 the right subtree of B
C.left = B;
C.right = A;
}
if (A === this.root) {
if (B) this._setRoot(B);
this.updateHeight(A); // Adjust heights
B && this.updateHeight(B);
C && this.updateHeight(C);
}
/**
* The `balanceRR` function performs a right-right rotation on an AVL tree to balance it.
* @param A - The parameter A is an AVLTreeNode object.
*/
balanceRR(A: N): void {
const parentOfA = A.parent;
const B = A.right; // A is right-heavy and B is right-heavy
A.parent = B;
if (B) {
if (B.left) {
B.left.parent = A;
}
B.parent = parentOfA;
}
if (A === this.root) {
if (B) this._setRoot(B);
} else {
if (parentOfA) {
if (parentOfA.left === A) {
parentOfA.left = B;
} else {
if (parentOfA) {
if (parentOfA.left === A) {
parentOfA.left = B;
} else {
parentOfA.right = B;
}
}
parentOfA.right = B;
}
if (B) {
A.right = B.left; // Make T2 the right subtree of A
B.left = A;
}
this.updateHeight(A);
B && this.updateHeight(B);
}
}
/**
* The `balanceRL` function performs a right-left rotation to balance an AVL tree.
* @param A - A is an AVLTreeNode object.
*/
balanceRL(A: N): void {
const parentOfA = A.parent;
const B = A.right; // A is right-heavy
let C = null;
if (B) {
C = B.left; // B is left-heavy
}
if (B) {
A.right = B.left; // Make T2 the right subtree of A
B.left = A;
}
this.updateHeight(A);
B && this.updateHeight(B);
}
A.parent = C;
if (B) B.parent = C;
/**
* The `balanceRL` function performs a right-left rotation to balance an AVL tree.
* @param A - A is an AVLTreeNode object.
*/
balanceRL(A: N): void {
const parentOfA = A.parent;
const B = A.right; // A is right-heavy
let C = null;
if (B) {
C = B.left; // B is left-heavy
}
if (C) {
if (C.left) {
C.left.parent = A;
}
if (C.right) {
C.right.parent = B;
}
C.parent = parentOfA;
}
A.parent = C;
if (B) B.parent = C;
if (C) {
if (C.left) {
C.left.parent = A;
}
if (C.right) {
C.right.parent = B;
}
C.parent = parentOfA;
}
if (A === this.root) {
if (C) this._setRoot(C);
if (A === this.root) {
if (C) this._setRoot(C);
} else {
if (parentOfA) {
if (parentOfA.left === A) {
parentOfA.left = C;
} else {
if (parentOfA) {
if (parentOfA.left === A) {
parentOfA.left = C;
} else {
parentOfA.right = C;
}
}
parentOfA.right = C;
}
if (C) A.right = C.left; // Make T2 the right subtree of A
if (B && C) B.left = C.right; // Make T3 the left subtree of B
if (C) C.left = A;
if (C) C.right = B;
this.updateHeight(A); // Adjust heights
B && this.updateHeight(B);
C && this.updateHeight(C);
}
}
if (C) A.right = C.left; // Make T2 the right subtree of A
if (B && C) B.left = C.right; // Make T3 the left subtree of B
if (C) C.left = A;
if (C) C.right = B;
this.updateHeight(A); // Adjust heights
B && this.updateHeight(B);
C && this.updateHeight(C);
}
}

View file

@ -7,72 +7,72 @@
*/
export class BinaryIndexedTree {
/**
* The constructor initializes an array with a specified length and fills it with zeros.
* @param {number} n - The parameter `n` represents the size of the array that will be used to store the sum tree. The
* sum tree is a binary tree data structure used to efficiently calculate the sum of a range of elements in an array.
* The size of the sum tree array is `n + 1` because
*/
constructor(n: number) {
this._sumTree = new Array<number>(n + 1).fill(0);
}
/**
* The constructor initializes an array with a specified length and fills it with zeros.
* @param {number} n - The parameter `n` represents the size of the array that will be used to store the sum tree. The
* sum tree is a binary tree data structure used to efficiently calculate the sum of a range of elements in an array.
* The size of the sum tree array is `n + 1` because
*/
constructor(n: number) {
this._sumTree = new Array<number>(n + 1).fill(0);
}
private _sumTree: number[];
private _sumTree: number[];
get sumTree(): number[] {
return this._sumTree;
}
get sumTree(): number[] {
return this._sumTree;
}
static lowBit(x: number) {
return x & (-x);
}
static lowBit(x: number) {
return x & (-x);
}
/**
* The update function updates the values in a binary indexed tree by adding a delta value to the specified index and
* its ancestors.
* @param {number} i - The parameter `i` represents the index of the element in the `_sumTree` array that needs to be
* updated.
* @param {number} delta - The "delta" parameter represents the change in value that needs to be added to the element
* at index "i" in the "_sumTree" array.
*/
update(i: number, delta: number) {
while (i < this._sumTree.length) {
this._sumTree[i] += delta;
i += BinaryIndexedTree.lowBit(i);
}
/**
* The update function updates the values in a binary indexed tree by adding a delta value to the specified index and
* its ancestors.
* @param {number} i - The parameter `i` represents the index of the element in the `_sumTree` array that needs to be
* updated.
* @param {number} delta - The "delta" parameter represents the change in value that needs to be added to the element
* at index "i" in the "_sumTree" array.
*/
update(i: number, delta: number) {
while (i < this._sumTree.length) {
this._sumTree[i] += delta;
i += BinaryIndexedTree.lowBit(i);
}
}
/**
* The function calculates the prefix sum of an array using a binary indexed tree.
* @param {number} i - The parameter "i" in the function "getPrefixSum" represents the index of the element in the
* array for which we want to calculate the prefix sum.
* @returns The function `getPrefixSum` returns the prefix sum of the elements in the binary indexed tree up to index
* `i`.
*/
getPrefixSum(i: number) {
let sum = 0;
while (i > 0) {
sum += this._sumTree[i];
i -= BinaryIndexedTree.lowBit(i);
}
return sum;
/**
* The function calculates the prefix sum of an array using a binary indexed tree.
* @param {number} i - The parameter "i" in the function "getPrefixSum" represents the index of the element in the
* array for which we want to calculate the prefix sum.
* @returns The function `getPrefixSum` returns the prefix sum of the elements in the binary indexed tree up to index
* `i`.
*/
getPrefixSum(i: number) {
let sum = 0;
while (i > 0) {
sum += this._sumTree[i];
i -= BinaryIndexedTree.lowBit(i);
}
return sum;
}
/**
* The function `getRangeSum` calculates the sum of a range of numbers in an array.
* @param {number} start - The start parameter is the starting index of the range for which we want to calculate the
* sum.
* @param {number} end - The "end" parameter represents the ending index of the range for which we want to calculate
* the sum.
* @returns the sum of the elements in the range specified by the start and end indices.
*/
getRangeSum(start: number, end: number): number {
if (!(0 <= start && start <= end && end <= this._sumTree.length))
throw 'Index out of bounds';
return this.getPrefixSum(end) - this.getPrefixSum(start);
}
/**
* The function `getRangeSum` calculates the sum of a range of numbers in an array.
* @param {number} start - The start parameter is the starting index of the range for which we want to calculate the
* sum.
* @param {number} end - The "end" parameter represents the ending index of the range for which we want to calculate
* the sum.
* @returns the sum of the elements in the range specified by the start and end indices.
*/
getRangeSum(start: number, end: number): number {
if (!(0 <= start && start <= end && end <= this._sumTree.length))
throw 'Index out of bounds';
return this.getPrefixSum(end) - this.getPrefixSum(start);
}
protected _setSumTree(value: number[]) {
this._sumTree = value;
}
protected _setSumTree(value: number[]) {
this._sumTree = value;
}
}

View file

@ -11,32 +11,32 @@ import {AbstractBinaryTree, AbstractBinaryTreeNode} from './abstract-binary-tree
import {IBinaryTree, IBinaryTreeNode} from '../../interfaces';
export class BinaryTreeNode<T = any, NEIGHBOR extends BinaryTreeNode<T, NEIGHBOR> = BinaryTreeNodeNested<T>> extends AbstractBinaryTreeNode<T, NEIGHBOR> implements IBinaryTreeNode<T, NEIGHBOR> {
constructor(id: BinaryTreeNodeId, val?: T) {
super(id, val);
}
constructor(id: BinaryTreeNodeId, val?: T) {
super(id, val);
}
}
export class BinaryTree<N extends BinaryTreeNode<N['val'], N> = BinaryTreeNode> extends AbstractBinaryTree<N> implements IBinaryTree<N> {
/**
* This is a constructor function for a binary tree class that takes an optional options parameter.
* @param {BinaryTreeOptions} [options] - The `options` parameter is an optional object that can be passed to the
* constructor of the `BinaryTree` class. It allows you to customize the behavior of the binary tree by providing
* different configuration options.
*/
constructor(options?: BinaryTreeOptions) {
super(options);
}
/**
* This is a constructor function for a binary tree class that takes an optional options parameter.
* @param {BinaryTreeOptions} [options] - The `options` parameter is an optional object that can be passed to the
* constructor of the `BinaryTree` class. It allows you to customize the behavior of the binary tree by providing
* different configuration options.
*/
constructor(options?: BinaryTreeOptions) {
super(options);
}
/**
* The function creates a new binary tree node with an optional value.
* @param {BinaryTreeNodeId} id - The `id` parameter is the identifier for the binary tree node. It is of type
* `BinaryTreeNodeId`, which represents the unique identifier for each node in the binary tree.
* @param [val] - The `val` parameter is an optional value that can be assigned to the node. It represents the value
* stored in the node.
* @returns a new instance of a BinaryTreeNode with the specified id and value.
*/
createNode(id: BinaryTreeNodeId, val?: N['val']): N {
return new BinaryTreeNode<N['val'], N>(id, val) as N;
}
}
/**
* The function creates a new binary tree node with an optional value.
* @param {BinaryTreeNodeId} id - The `id` parameter is the identifier for the binary tree node. It is of type
* `BinaryTreeNodeId`, which represents the unique identifier for each node in the binary tree.
* @param [val] - The `val` parameter is an optional value that can be assigned to the node. It represents the value
* stored in the node.
* @returns a new instance of a BinaryTreeNode with the specified id and value.
*/
createNode(id: BinaryTreeNodeId, val?: N['val']): N {
return new BinaryTreeNode<N['val'], N>(id, val) as N;
}
}

View file

@ -11,428 +11,428 @@ import {BinaryTree, BinaryTreeNode} from './binary-tree';
import {IBST, IBSTNode} from '../../interfaces';
export class BSTNode<T = any, NEIGHBOR extends BSTNode<T, NEIGHBOR> = BSTNodeNested<T>> extends BinaryTreeNode<T, NEIGHBOR> implements IBSTNode<T, NEIGHBOR> {
constructor(id: BinaryTreeNodeId, val?: T) {
super(id, val);
}
constructor(id: BinaryTreeNodeId, val?: T) {
super(id, val);
}
}
export class BST<N extends BSTNode<N['val'], N> = BSTNode> extends BinaryTree<N> implements IBST<N> {
/**
* The constructor function initializes a binary search tree object with an optional comparator function.
* @param {BSTOptions} [options] - An optional object that contains configuration options for the binary search tree.
*/
constructor(options?: BSTOptions) {
super(options);
if (options !== undefined) {
const {comparator} = options;
if (comparator !== undefined) {
this._comparator = comparator;
/**
* The constructor function initializes a binary search tree object with an optional comparator function.
* @param {BSTOptions} [options] - An optional object that contains configuration options for the binary search tree.
*/
constructor(options?: BSTOptions) {
super(options);
if (options !== undefined) {
const {comparator} = options;
if (comparator !== undefined) {
this._comparator = comparator;
}
}
}
/**
* The function creates a new binary search tree node with the given id and value.
* @param {BinaryTreeNodeId} id - The `id` parameter is the identifier for the binary tree node. It is used to uniquely
* identify each node in the binary tree.
* @param [val] - The `val` parameter is an optional value that can be assigned to the node. It represents the value
* that will be stored in the node.
* @returns a new instance of the BSTNode class with the specified id and value.
*/
override createNode(id: BinaryTreeNodeId, val?: N['val']): N {
return new BSTNode<N['val'], N>(id, val) as N;
}
/**
* The `add` function adds a new node to a binary tree, ensuring that duplicates are not accepted.
* @param {BinaryTreeNodeId} id - The `id` parameter is the identifier of the binary tree node that we want to add. It
* is of type `BinaryTreeNodeId`.
* @param [val] - The `val` parameter is an optional value that can be assigned to the node being added. It represents
* the value associated with the node.
* @returns The function `add` returns the inserted node (`inserted`) if it was successfully added to the binary tree.
* If the node was not added (e.g., due to a duplicate ID), it returns `null` or `undefined`.
*/
override add(id: BinaryTreeNodeId, val?: N['val']): N | null | undefined {
// TODO support node as a param
let inserted: N | null = null;
const newNode = this.createNode(id, val);
if (this.root === null) {
this._setRoot(newNode);
this._setSize(this.size + 1);
inserted = (this.root);
} else {
let cur = this.root;
let traversing = true;
while (traversing) {
if (cur !== null && newNode !== null) {
if (this._compare(cur.id, id) === CP.eq) {
if (newNode) {
cur.val = newNode.val;
}
}
}
/**
* The function creates a new binary search tree node with the given id and value.
* @param {BinaryTreeNodeId} id - The `id` parameter is the identifier for the binary tree node. It is used to uniquely
* identify each node in the binary tree.
* @param [val] - The `val` parameter is an optional value that can be assigned to the node. It represents the value
* that will be stored in the node.
* @returns a new instance of the BSTNode class with the specified id and value.
*/
override createNode(id: BinaryTreeNodeId, val?: N['val']): N {
return new BSTNode<N['val'], N>(id, val) as N;
}
/**
* The `add` function adds a new node to a binary tree, ensuring that duplicates are not accepted.
* @param {BinaryTreeNodeId} id - The `id` parameter is the identifier of the binary tree node that we want to add. It
* is of type `BinaryTreeNodeId`.
* @param [val] - The `val` parameter is an optional value that can be assigned to the node being added. It represents
* the value associated with the node.
* @returns The function `add` returns the inserted node (`inserted`) if it was successfully added to the binary tree.
* If the node was not added (e.g., due to a duplicate ID), it returns `null` or `undefined`.
*/
override add(id: BinaryTreeNodeId, val?: N['val']): N | null | undefined {
// TODO support node as a param
let inserted: N | null = null;
const newNode = this.createNode(id, val);
if (this.root === null) {
this._setRoot(newNode);
this._setSize(this.size + 1);
inserted = (this.root);
//Duplicates are not accepted.
traversing = false;
inserted = cur;
} else if (this._compare(cur.id, id) === CP.gt) {
// Traverse left of the node
if (cur.left === undefined) {
if (newNode) {
newNode.parent = cur;
}
//Add to the left of the current node
cur.left = newNode;
this._setSize(this.size + 1);
traversing = false;
inserted = cur.left;
} else {
//Traverse the left of the current node
if (cur.left) cur = cur.left;
}
} else if (this._compare(cur.id, id) === CP.lt) {
// Traverse right of the node
if (cur.right === undefined) {
if (newNode) {
newNode.parent = cur;
}
//Add to the right of the current node
cur.right = newNode;
this._setSize(this.size + 1);
traversing = false;
inserted = (cur.right);
} else {
//Traverse the left of the current node
if (cur.right) cur = cur.right;
}
}
} else {
let cur = this.root;
let traversing = true;
while (traversing) {
if (cur !== null && newNode !== null) {
if (this._compare(cur.id, id) === CP.eq) {
if (newNode) {
cur.val = newNode.val;
}
//Duplicates are not accepted.
traversing = false;
inserted = cur;
} else if (this._compare(cur.id, id) === CP.gt) {
// Traverse left of the node
if (cur.left === undefined) {
if (newNode) {
newNode.parent = cur;
}
//Add to the left of the current node
cur.left = newNode;
this._setSize(this.size + 1);
traversing = false;
inserted = cur.left;
} else {
//Traverse the left of the current node
if (cur.left) cur = cur.left;
}
} else if (this._compare(cur.id, id) === CP.lt) {
// Traverse right of the node
if (cur.right === undefined) {
if (newNode) {
newNode.parent = cur;
}
//Add to the right of the current node
cur.right = newNode;
this._setSize(this.size + 1);
traversing = false;
inserted = (cur.right);
} else {
//Traverse the left of the current node
if (cur.right) cur = cur.right;
}
}
} else {
traversing = false;
}
}
traversing = false;
}
return inserted;
}
}
return inserted;
}
/**
* The function returns the first node in a binary tree that matches the given property name and value.
* @param {BinaryTreeNodeId | N} nodeProperty - The `nodeProperty` parameter can be either a `BinaryTreeNodeId` or a
* generic type `N`. It represents the property of the binary tree node that you want to search for.
* @param {BinaryTreeNodePropertyName} [propertyName] - The `propertyName` parameter is an optional parameter that
* specifies the property name to use for searching the binary tree nodes. If not provided, it defaults to `'id'`.
* @returns The method is returning either a BinaryTreeNodeId or N (generic type) or null.
*/
override get(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName): N | null {
propertyName = propertyName ?? 'id';
return this.getNodes(nodeProperty, propertyName, true)[0] ?? null;
}
/**
* The function returns the first node in a binary tree that matches the given property name and value.
* @param {BinaryTreeNodeId | N} nodeProperty - The `nodeProperty` parameter can be either a `BinaryTreeNodeId` or a
* generic type `N`. It represents the property of the binary tree node that you want to search for.
* @param {BinaryTreeNodePropertyName} [propertyName] - The `propertyName` parameter is an optional parameter that
* specifies the property name to use for searching the binary tree nodes. If not provided, it defaults to `'id'`.
* @returns The method is returning either a BinaryTreeNodeId or N (generic type) or null.
*/
override get(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName): N | null {
propertyName = propertyName ?? 'id';
return this.getNodes(nodeProperty, propertyName, true)[0] ?? null;
}
/**
* The function returns the id of the rightmost node if the comparison between two values is less than, the id of the
* leftmost node if the comparison is greater than, and the id of the rightmost node otherwise.
* @returns The method `lastKey()` returns the id of the rightmost node in the binary tree if the comparison between
* the values at index 0 and 1 is less than, otherwise it returns the id of the leftmost node. If the comparison is
* equal, it returns the id of the rightmost node. If there are no nodes in the tree, it returns 0.
*/
lastKey(): BinaryTreeNodeId {
if (this._compare(0, 1) === CP.lt) return this.getRightMost()?.id ?? 0;
else if (this._compare(0, 1) === CP.gt) return this.getLeftMost()?.id ?? 0;
else return this.getRightMost()?.id ?? 0;
}
/**
* The function returns the id of the rightmost node if the comparison between two values is less than, the id of the
* leftmost node if the comparison is greater than, and the id of the rightmost node otherwise.
* @returns The method `lastKey()` returns the id of the rightmost node in the binary tree if the comparison between
* the values at index 0 and 1 is less than, otherwise it returns the id of the leftmost node. If the comparison is
* equal, it returns the id of the rightmost node. If there are no nodes in the tree, it returns 0.
*/
lastKey(): BinaryTreeNodeId {
if (this._compare(0, 1) === CP.lt) return this.getRightMost()?.id ?? 0;
else if (this._compare(0, 1) === CP.gt) return this.getLeftMost()?.id ?? 0;
else return this.getRightMost()?.id ?? 0;
}
/**
* The function `getNodes` returns an array of nodes in a binary tree that match a given property value.
* @param {BinaryTreeNodeId | N} nodeProperty - The `nodeProperty` parameter can be either a `BinaryTreeNodeId` or an
* `N` type. It represents the property of the binary tree node that you want to compare with.
* @param {BinaryTreeNodePropertyName} [propertyName] - The `propertyName` parameter is an optional parameter that
* specifies the property name to use for comparison. If not provided, it defaults to `'id'`.
* @param {boolean} [onlyOne] - The `onlyOne` parameter is an optional boolean parameter that determines whether to
* return only one node that matches the given `nodeProperty` or all nodes that match the `nodeProperty`. If `onlyOne`
* is set to `true`, the function will return an array with only one node (if
* @returns an array of nodes (type N).
*/
override getNodes(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName, onlyOne ?: boolean): N[] {
propertyName = propertyName ?? 'id';
if (!this.root) return [];
const result: N[] = [];
/**
* The function `getNodes` returns an array of nodes in a binary tree that match a given property value.
* @param {BinaryTreeNodeId | N} nodeProperty - The `nodeProperty` parameter can be either a `BinaryTreeNodeId` or an
* `N` type. It represents the property of the binary tree node that you want to compare with.
* @param {BinaryTreeNodePropertyName} [propertyName] - The `propertyName` parameter is an optional parameter that
* specifies the property name to use for comparison. If not provided, it defaults to `'id'`.
* @param {boolean} [onlyOne] - The `onlyOne` parameter is an optional boolean parameter that determines whether to
* return only one node that matches the given `nodeProperty` or all nodes that match the `nodeProperty`. If `onlyOne`
* is set to `true`, the function will return an array with only one node (if
* @returns an array of nodes (type N).
*/
override getNodes(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName, onlyOne ?: boolean): N[] {
propertyName = propertyName ?? 'id';
if (!this.root) return [];
const result: N[] = [];
if (this.loopType === LoopType.RECURSIVE) {
const _traverse = (cur: N) => {
if (this._pushByPropertyNameStopOrNot(cur, result, nodeProperty, propertyName, onlyOne)) return;
if (this.loopType === LoopType.RECURSIVE) {
const _traverse = (cur: N) => {
if (this._pushByPropertyNameStopOrNot(cur, result, nodeProperty, propertyName, onlyOne)) return;
if (!cur.left && !cur.right) return;
if (propertyName === 'id') {
if (this._compare(cur.id, nodeProperty as number) === CP.gt) cur.left && _traverse(cur.left);
if (this._compare(cur.id, nodeProperty as number) === CP.lt) cur.right && _traverse(cur.right);
} else {
cur.left && _traverse(cur.left);
cur.right && _traverse(cur.right);
}
}
_traverse(this.root);
if (!cur.left && !cur.right) return;
if (propertyName === 'id') {
if (this._compare(cur.id, nodeProperty as number) === CP.gt) cur.left && _traverse(cur.left);
if (this._compare(cur.id, nodeProperty as number) === CP.lt) cur.right && _traverse(cur.right);
} else {
const queue: N[] = [this.root];
while (queue.length > 0) {
const cur = queue.shift();
if (cur) {
if (this._pushByPropertyNameStopOrNot(cur, result, nodeProperty, propertyName, onlyOne)) return result;
if (propertyName === 'id') {
if (this._compare(cur.id, nodeProperty as number) === CP.gt) cur.left && queue.push(cur.left);
if (this._compare(cur.id, nodeProperty as number) === CP.lt) cur.right && queue.push(cur.right);
} else {
cur.left && queue.push(cur.left);
cur.right && queue.push(cur.right);
}
}
}
cur.left && _traverse(cur.left);
cur.right && _traverse(cur.right);
}
}
return result;
_traverse(this.root);
} else {
const queue: N[] = [this.root];
while (queue.length > 0) {
const cur = queue.shift();
if (cur) {
if (this._pushByPropertyNameStopOrNot(cur, result, nodeProperty, propertyName, onlyOne)) return result;
if (propertyName === 'id') {
if (this._compare(cur.id, nodeProperty as number) === CP.gt) cur.left && queue.push(cur.left);
if (this._compare(cur.id, nodeProperty as number) === CP.lt) cur.right && queue.push(cur.right);
} else {
cur.left && queue.push(cur.left);
cur.right && queue.push(cur.right);
}
}
}
}
// --- start additional functions
/**
* The `lesserSum` function calculates the sum of property values in a binary tree for nodes that have a property value
* less than a given node.
* @param {N | BinaryTreeNodeId | null} beginNode - The `beginNode` parameter can be one of the following:
* @param {BinaryTreeNodePropertyName} [propertyName] - The `propertyName` parameter is an optional parameter that
* specifies the property name to use for calculating the sum. If not provided, it defaults to `'id'`.
* @returns The function `lesserSum` returns a number, which represents the sum of the values of the nodes in the
* binary tree that have a lesser value than the specified `beginNode` based on the `propertyName`.
*/
lesserSum(beginNode: N | BinaryTreeNodeId | null, propertyName ?: BinaryTreeNodePropertyName): number {
propertyName = propertyName ?? 'id';
if (typeof beginNode === 'number') beginNode = this.get(beginNode, 'id');
if (!beginNode) return 0;
if (!this.root) return 0;
const id = beginNode.id;
const getSumByPropertyName = (cur: N) => {
let needSum: number;
switch (propertyName) {
case 'id':
needSum = cur.id;
break;
default:
needSum = cur.id;
break;
}
return needSum;
}
return result;
}
let sum = 0;
// --- start additional functions
/**
* The `lesserSum` function calculates the sum of property values in a binary tree for nodes that have a property value
* less than a given node.
* @param {N | BinaryTreeNodeId | null} beginNode - The `beginNode` parameter can be one of the following:
* @param {BinaryTreeNodePropertyName} [propertyName] - The `propertyName` parameter is an optional parameter that
* specifies the property name to use for calculating the sum. If not provided, it defaults to `'id'`.
* @returns The function `lesserSum` returns a number, which represents the sum of the values of the nodes in the
* binary tree that have a lesser value than the specified `beginNode` based on the `propertyName`.
*/
lesserSum(beginNode: N | BinaryTreeNodeId | null, propertyName ?: BinaryTreeNodePropertyName): number {
propertyName = propertyName ?? 'id';
if (typeof beginNode === 'number') beginNode = this.get(beginNode, 'id');
if (!beginNode) return 0;
if (!this.root) return 0;
const id = beginNode.id;
const getSumByPropertyName = (cur: N) => {
let needSum: number;
switch (propertyName) {
case 'id':
needSum = cur.id;
break;
default:
needSum = cur.id;
break;
}
return needSum;
}
if (this.loopType === LoopType.RECURSIVE) {
const _traverse = (cur: N): void => {
const compared = this._compare(cur.id, id);
if (compared === CP.eq) {
if (cur.right) sum += this.subTreeSum(cur.right, propertyName);
return;
} else if (compared === CP.lt) {
if (cur.left) sum += this.subTreeSum(cur.left, propertyName);
sum += getSumByPropertyName(cur);
if (cur.right) _traverse(cur.right);
else return;
} else {
if (cur.left) _traverse(cur.left);
else return;
}
};
let sum = 0;
_traverse(this.root);
if (this.loopType === LoopType.RECURSIVE) {
const _traverse = (cur: N): void => {
const compared = this._compare(cur.id, id);
if (compared === CP.eq) {
if (cur.right) sum += this.subTreeSum(cur.right, propertyName);
return;
} else if (compared === CP.lt) {
if (cur.left) sum += this.subTreeSum(cur.left, propertyName);
sum += getSumByPropertyName(cur);
if (cur.right) _traverse(cur.right);
else return;
} else {
const queue: N[] = [this.root];
while (queue.length > 0) {
const cur = queue.shift();
if (cur) {
const compared = this._compare(cur.id, id);
if (compared === CP.eq) {
if (cur.right) sum += this.subTreeSum(cur.right, propertyName);
return sum;
} else if (compared === CP.lt) { // todo maybe a bug
if (cur.left) sum += this.subTreeSum(cur.left, propertyName);
sum += getSumByPropertyName(cur);
if (cur.right) queue.push(cur.right);
else return sum;
} else {
if (cur.left) queue.push(cur.left);
else return sum;
}
}
}
if (cur.left) _traverse(cur.left);
else return;
}
};
return sum;
_traverse(this.root);
} else {
const queue: N[] = [this.root];
while (queue.length > 0) {
const cur = queue.shift();
if (cur) {
const compared = this._compare(cur.id, id);
if (compared === CP.eq) {
if (cur.right) sum += this.subTreeSum(cur.right, propertyName);
return sum;
} else if (compared === CP.lt) { // todo maybe a bug
if (cur.left) sum += this.subTreeSum(cur.left, propertyName);
sum += getSumByPropertyName(cur);
if (cur.right) queue.push(cur.right);
else return sum;
} else {
if (cur.left) queue.push(cur.left);
else return sum;
}
}
}
}
/**
* The `allGreaterNodesAdd` function adds a delta value to the specified property of all nodes in a binary tree that
* have a greater value than a given node.
* @param {N | BinaryTreeNodeId | null} node - The `node` parameter can be either of type `N` (a generic type),
* `BinaryTreeNodeId`, or `null`. It represents the node in the binary tree to which the delta value will be added.
* @param {number} delta - The `delta` parameter is a number that represents the amount by which the property value of
* each greater node should be increased.
* @param {BinaryTreeNodePropertyName} [propertyName] - The `propertyName` parameter is an optional parameter that
* specifies the property name of the nodes in the binary tree that you want to update. If not provided, it defaults to
* 'id'.
* @returns a boolean value.
*/
allGreaterNodesAdd(node: N | BinaryTreeNodeId | null, delta: number, propertyName ?: BinaryTreeNodePropertyName): boolean {
propertyName = propertyName ?? 'id';
if (typeof node === 'number') node = this.get(node, 'id');
if (!node) return false;
const id = node.id;
if (!this.root) return false;
return sum;
}
const _sumByPropertyName = (cur: N) => {
switch (propertyName) {
case 'id':
cur.id += delta;
break;
default:
cur.id += delta;
break;
}
/**
* The `allGreaterNodesAdd` function adds a delta value to the specified property of all nodes in a binary tree that
* have a greater value than a given node.
* @param {N | BinaryTreeNodeId | null} node - The `node` parameter can be either of type `N` (a generic type),
* `BinaryTreeNodeId`, or `null`. It represents the node in the binary tree to which the delta value will be added.
* @param {number} delta - The `delta` parameter is a number that represents the amount by which the property value of
* each greater node should be increased.
* @param {BinaryTreeNodePropertyName} [propertyName] - The `propertyName` parameter is an optional parameter that
* specifies the property name of the nodes in the binary tree that you want to update. If not provided, it defaults to
* 'id'.
* @returns a boolean value.
*/
allGreaterNodesAdd(node: N | BinaryTreeNodeId | null, delta: number, propertyName ?: BinaryTreeNodePropertyName): boolean {
propertyName = propertyName ?? 'id';
if (typeof node === 'number') node = this.get(node, 'id');
if (!node) return false;
const id = node.id;
if (!this.root) return false;
const _sumByPropertyName = (cur: N) => {
switch (propertyName) {
case 'id':
cur.id += delta;
break;
default:
cur.id += delta;
break;
}
}
if (this.loopType === LoopType.RECURSIVE) {
const _traverse = (cur: N) => {
const compared = this._compare(cur.id, id);
if (compared === CP.gt) _sumByPropertyName(cur);
if (!cur.left && !cur.right) return;
if (cur.left && this._compare(cur.left.id, id) === CP.gt) _traverse(cur.left);
if (cur.right && this._compare(cur.right.id, id) === CP.gt) _traverse(cur.right);
};
_traverse(this.root);
return true;
} else {
const queue: N[] = [this.root];
while (queue.length > 0) {
const cur = queue.shift();
if (cur) {
const compared = this._compare(cur.id, id);
if (compared === CP.gt) _sumByPropertyName(cur);
if (cur.left && this._compare(cur.left.id, id) === CP.gt) queue.push(cur.left);
if (cur.right && this._compare(cur.right.id, id) === CP.gt) queue.push(cur.right);
}
if (this.loopType === LoopType.RECURSIVE) {
const _traverse = (cur: N) => {
const compared = this._compare(cur.id, id);
if (compared === CP.gt) _sumByPropertyName(cur);
}
return true;
}
}
if (!cur.left && !cur.right) return;
if (cur.left && this._compare(cur.left.id, id) === CP.gt) _traverse(cur.left);
if (cur.right && this._compare(cur.right.id, id) === CP.gt) _traverse(cur.right);
};
/**
* Balancing Adjustment:
* Perfectly Balanced Binary Tree: Since the balance of a perfectly balanced binary tree is already fixed, no additional balancing adjustment is needed. Any insertion or deletion operation will disrupt the perfect balance, often requiring a complete reconstruction of the tree.
* AVL Tree: After insertion or deletion operations, an AVL tree performs rotation adjustments based on the balance factor of nodes to restore the tree's balance. These rotations can be left rotations, right rotations, left-right rotations, or right-left rotations, performed as needed.
*
* Use Cases and Efficiency:
* Perfectly Balanced Binary Tree: Perfectly balanced binary trees are typically used in specific scenarios such as complete binary heaps in heap sort or certain types of Huffman trees. However, they are not suitable for dynamic operations requiring frequent insertions and deletions, as these operations often necessitate full tree reconstruction.
* AVL Tree: AVL trees are well-suited for scenarios involving frequent searching, insertion, and deletion operations. Through rotation adjustments, AVL trees maintain their balance, ensuring average and worst-case time complexity of O(log n).
*/
_traverse(this.root);
return true;
/**
* The `perfectlyBalance` function takes a binary tree, performs a depth-first search to sort the nodes, and then
* constructs a balanced binary search tree using either a recursive or iterative approach.
* @returns The function `perfectlyBalance()` returns a boolean value.
*/
perfectlyBalance(): boolean {
const sorted = this.DFS('in', 'node'), n = sorted.length;
this.clear();
if (sorted.length < 1) return false;
if (this.loopType === LoopType.RECURSIVE) {
const buildBalanceBST = (l: number, r: number) => {
if (l > r) return;
const m = l + Math.floor((r - l) / 2);
const midNode = sorted[m];
this.add(midNode.id, midNode.val);
buildBalanceBST(l, m - 1);
buildBalanceBST(m + 1, r);
};
buildBalanceBST(0, n - 1);
return true;
} else {
const stack: [[number, number]] = [[0, n - 1]];
while (stack.length > 0) {
const popped = stack.pop();
if (popped) {
const [l, r] = popped;
if (l <= r) {
const m = l + Math.floor((r - l) / 2);
const midNode = sorted[m];
this.add(midNode.id, midNode.val);
stack.push([m + 1, r]);
stack.push([l, m - 1]);
}
}
}
return true;
}
}
/**
* The function `isAVLBalanced` checks if a binary tree is balanced according to the AVL tree property.
* @returns a boolean value.
*/
isAVLBalanced(): boolean {
if (!this.root) return true;
let balanced = true;
if (this.loopType === LoopType.RECURSIVE) {
const _height = (cur: N | null | undefined): number => {
if (!cur) return 0;
const leftHeight = _height(cur.left), rightHeight = _height(cur.right);
if (Math.abs(leftHeight - rightHeight) > 1) balanced = false;
return Math.max(leftHeight, rightHeight) + 1;
};
_height(this.root);
} else {
const stack: N[] = [];
let node: N | null | undefined = this.root, last: N | null = null;
const depths: Map<N, number> = new Map();
while (stack.length > 0 || node) {
if (node) {
stack.push(node);
node = node.left;
} else {
const queue: N[] = [this.root];
while (queue.length > 0) {
const cur = queue.shift();
if (cur) {
const compared = this._compare(cur.id, id);
if (compared === CP.gt) _sumByPropertyName(cur);
if (cur.left && this._compare(cur.left.id, id) === CP.gt) queue.push(cur.left);
if (cur.right && this._compare(cur.right.id, id) === CP.gt) queue.push(cur.right);
}
node = stack[stack.length - 1]
if (!node.right || last === node.right) {
node = stack.pop();
if (node) {
const left = node.left ? depths.get(node.left) ?? -1 : -1;
const right = node.right ? depths.get(node.right) ?? -1 : -1;
if (Math.abs(left - right) > 1) return false;
depths.set(node, 1 + Math.max(left, right));
last = node;
node = null;
}
return true;
} else node = node.right
}
}
}
/**
* Balancing Adjustment:
* Perfectly Balanced Binary Tree: Since the balance of a perfectly balanced binary tree is already fixed, no additional balancing adjustment is needed. Any insertion or deletion operation will disrupt the perfect balance, often requiring a complete reconstruction of the tree.
* AVL Tree: After insertion or deletion operations, an AVL tree performs rotation adjustments based on the balance factor of nodes to restore the tree's balance. These rotations can be left rotations, right rotations, left-right rotations, or right-left rotations, performed as needed.
*
* Use Cases and Efficiency:
* Perfectly Balanced Binary Tree: Perfectly balanced binary trees are typically used in specific scenarios such as complete binary heaps in heap sort or certain types of Huffman trees. However, they are not suitable for dynamic operations requiring frequent insertions and deletions, as these operations often necessitate full tree reconstruction.
* AVL Tree: AVL trees are well-suited for scenarios involving frequent searching, insertion, and deletion operations. Through rotation adjustments, AVL trees maintain their balance, ensuring average and worst-case time complexity of O(log n).
*/
return balanced;
}
protected _comparator: BSTComparator = (a, b) => a - b;
/**
* The `perfectlyBalance` function takes a binary tree, performs a depth-first search to sort the nodes, and then
* constructs a balanced binary search tree using either a recursive or iterative approach.
* @returns The function `perfectlyBalance()` returns a boolean value.
*/
perfectlyBalance(): boolean {
const sorted = this.DFS('in', 'node'), n = sorted.length;
this.clear();
/**
* The function compares two binary tree node IDs using a comparator function and returns whether the first ID is
* greater than, less than, or equal to the second ID.
* @param {BinaryTreeNodeId} a - a is a BinaryTreeNodeId, which represents the identifier of a binary tree node.
* @param {BinaryTreeNodeId} b - The parameter "b" in the above code refers to a BinaryTreeNodeId.
* @returns a value of type CP (ComparisonResult). The possible return values are CP.gt (greater than), CP.lt (less
* than), or CP.eq (equal).
*/
protected _compare(a: BinaryTreeNodeId, b: BinaryTreeNodeId): CP {
const compared = this._comparator(a, b);
if (compared > 0) return CP.gt;
else if (compared < 0) return CP.lt;
else return CP.eq;
}
if (sorted.length < 1) return false;
if (this.loopType === LoopType.RECURSIVE) {
const buildBalanceBST = (l: number, r: number) => {
if (l > r) return;
const m = l + Math.floor((r - l) / 2);
const midNode = sorted[m];
this.add(midNode.id, midNode.val);
buildBalanceBST(l, m - 1);
buildBalanceBST(m + 1, r);
};
buildBalanceBST(0, n - 1);
return true;
} else {
const stack: [[number, number]] = [[0, n - 1]];
while (stack.length > 0) {
const popped = stack.pop();
if (popped) {
const [l, r] = popped;
if (l <= r) {
const m = l + Math.floor((r - l) / 2);
const midNode = sorted[m];
this.add(midNode.id, midNode.val);
stack.push([m + 1, r]);
stack.push([l, m - 1]);
}
}
}
return true;
}
}
/**
* The function `isAVLBalanced` checks if a binary tree is balanced according to the AVL tree property.
* @returns a boolean value.
*/
isAVLBalanced(): boolean {
if (!this.root) return true;
let balanced = true;
if (this.loopType === LoopType.RECURSIVE) {
const _height = (cur: N | null | undefined): number => {
if (!cur) return 0;
const leftHeight = _height(cur.left), rightHeight = _height(cur.right);
if (Math.abs(leftHeight - rightHeight) > 1) balanced = false;
return Math.max(leftHeight, rightHeight) + 1;
};
_height(this.root);
} else {
const stack: N[] = [];
let node: N | null | undefined = this.root, last: N | null = null;
const depths: Map<N, number> = new Map();
while (stack.length > 0 || node) {
if (node) {
stack.push(node);
node = node.left;
} else {
node = stack[stack.length - 1]
if (!node.right || last === node.right) {
node = stack.pop();
if (node) {
const left = node.left ? depths.get(node.left) ?? -1 : -1;
const right = node.right ? depths.get(node.right) ?? -1 : -1;
if (Math.abs(left - right) > 1) return false;
depths.set(node, 1 + Math.max(left, right));
last = node;
node = null;
}
} else node = node.right
}
}
}
return balanced;
}
protected _comparator: BSTComparator = (a, b) => a - b;
/**
* The function compares two binary tree node IDs using a comparator function and returns whether the first ID is
* greater than, less than, or equal to the second ID.
* @param {BinaryTreeNodeId} a - a is a BinaryTreeNodeId, which represents the identifier of a binary tree node.
* @param {BinaryTreeNodeId} b - The parameter "b" in the above code refers to a BinaryTreeNodeId.
* @returns a value of type CP (ComparisonResult). The possible return values are CP.gt (greater than), CP.lt (less
* than), or CP.eq (equal).
*/
protected _compare(a: BinaryTreeNodeId, b: BinaryTreeNodeId): CP {
const compared = this._comparator(a, b);
if (compared > 0) return CP.gt;
else if (compared < 0) return CP.lt;
else return CP.eq;
}
// --- end additional functions
}
// --- end additional functions
}

View file

@ -4,99 +4,99 @@ import {BST, BSTNode} from './bst';
export class RBTreeNode<T = any, NEIGHBOR extends RBTreeNode<T, NEIGHBOR> = RBTreeNodeNested<T>> extends BSTNode<T, NEIGHBOR> implements IRBTreeNode<T, NEIGHBOR> {
constructor(id: BinaryTreeNodeId, val?: T, color: RBColor = RBColor.RED) {
super(id, val);
this._color = color;
}
constructor(id: BinaryTreeNodeId, val?: T, color: RBColor = RBColor.RED) {
super(id, val);
this._color = color;
}
private _color: RBColor;
private _color: RBColor;
get color(): RBColor {
return this._color;
}
get color(): RBColor {
return this._color;
}
set color(value: RBColor) {
this._color = value;
}
set color(value: RBColor) {
this._color = value;
}
// private override _parent: RBNode<T> | null;
// override set parent(v: RBNode<T> | null) {
// this._parent = v;
// }
// override get parent(): RBNode<T> | null {
// return this._parent;
// }
// private override _left?: RBNode<T> | null;
//
// override get left(): RBNode<T> | null | undefined {
// return this._left;
// }
//
// override set left(v: RBNode<T> | null | undefined) {
// if (v) {
// v.parent = this;
// }
// this._left = v;
// }
//
// private override _right?: RBNode<T> | null;
//
// override get right(): RBNode<T> | null | undefined {
// return this._right;
// }
//
// override set right(v: RBNode<T> | null | undefined) {
// if (v) {
// v.parent = this;
// }
// this._right = v;
// }
// private override _parent: RBNode<T> | null;
// override set parent(v: RBNode<T> | null) {
// this._parent = v;
// }
// override get parent(): RBNode<T> | null {
// return this._parent;
// }
// private override _left?: RBNode<T> | null;
//
// override get left(): RBNode<T> | null | undefined {
// return this._left;
// }
//
// override set left(v: RBNode<T> | null | undefined) {
// if (v) {
// v.parent = this;
// }
// this._left = v;
// }
//
// private override _right?: RBNode<T> | null;
//
// override get right(): RBNode<T> | null | undefined {
// return this._right;
// }
//
// override set right(v: RBNode<T> | null | undefined) {
// if (v) {
// v.parent = this;
// }
// this._right = v;
// }
}
export class RBTree<N extends RBTreeNode<N['val'], N> = RBTreeNode> extends BST<N> implements IRBTree<N> {
constructor(options?: RBTreeOptions) {
super(options);
}
constructor(options?: RBTreeOptions) {
super(options);
}
override createNode(id: BinaryTreeNodeId, val?: N['val']): N {
return new RBTreeNode(id, val, RBColor.RED) as N;
}
override createNode(id: BinaryTreeNodeId, val?: N['val']): N {
return new RBTreeNode(id, val, RBColor.RED) as N;
}
// private override _root: BinaryTreeNode<N> | null = null;
//
// override get root(): BinaryTreeNode<N> | null {
// return this._root;
// }
// private override _root: BinaryTreeNode<N> | null = null;
//
// override get root(): BinaryTreeNode<N> | null {
// return this._root;
// }
insert(id: number, val?: N | null) {
insert(id: number, val?: N | null) {
}
}
private leftRotate(node: N) {
private leftRotate(node: N) {
}
}
private rightRotate(node: N) {
private rightRotate(node: N) {
}
}
private insertFixup(node: N) {
private insertFixup(node: N) {
}
}
private deleteFixup(node: N) {
private deleteFixup(node: N) {
}
}
private transplant(u: N, v: N) {
private transplant(u: N, v: N) {
}
}
// override remove(id: BinaryTreeNodeId, ignoreCount?: boolean): BinaryTreeDeleted<N>[] {
//
// return [{deleted: new N(0, 0), needBalanced: null}];
// }
// override remove(id: BinaryTreeNodeId, ignoreCount?: boolean): BinaryTreeDeleted<N>[] {
//
// return [{deleted: new N(0, 0), needBalanced: null}];
// }
}

View file

@ -9,235 +9,235 @@
import type {SegmentTreeNodeVal} from '../../types';
export class SegmentTreeNode {
constructor(start: number, end: number, sum: number, val?: SegmentTreeNodeVal | null) {
this._start = start;
this._end = end;
this._sum = sum;
this._val = val || null;
}
constructor(start: number, end: number, sum: number, val?: SegmentTreeNodeVal | null) {
this._start = start;
this._end = end;
this._sum = sum;
this._val = val || null;
}
private _start = 0;
get start(): number {
return this._start;
}
private _start = 0;
get start(): number {
return this._start;
}
set start(v: number) {
this._start = v;
}
set start(v: number) {
this._start = v;
}
private _end = 0;
private _end = 0;
get end(): number {
return this._end;
}
get end(): number {
return this._end;
}
set end(v: number) {
this._end = v;
}
set end(v: number) {
this._end = v;
}
private _val: SegmentTreeNodeVal | null = null;
private _val: SegmentTreeNodeVal | null = null;
get val(): SegmentTreeNodeVal | null {
return this._val;
}
get val(): SegmentTreeNodeVal | null {
return this._val;
}
set val(v: SegmentTreeNodeVal | null) {
this._val = v;
}
set val(v: SegmentTreeNodeVal | null) {
this._val = v;
}
private _sum = 0;
private _sum = 0;
get sum(): number {
return this._sum;
}
get sum(): number {
return this._sum;
}
set sum(v: number) {
this._sum = v;
}
set sum(v: number) {
this._sum = v;
}
private _left: SegmentTreeNode | null = null;
private _left: SegmentTreeNode | null = null;
get left(): SegmentTreeNode | null {
return this._left;
}
get left(): SegmentTreeNode | null {
return this._left;
}
set left(v: SegmentTreeNode | null) {
this._left = v;
}
set left(v: SegmentTreeNode | null) {
this._left = v;
}
private _right: SegmentTreeNode | null = null;
private _right: SegmentTreeNode | null = null;
get right(): SegmentTreeNode | null {
return this._right;
}
get right(): SegmentTreeNode | null {
return this._right;
}
set right(v: SegmentTreeNode | null) {
this._right = v;
}
set right(v: SegmentTreeNode | null) {
this._right = v;
}
}
export class SegmentTree {
/**
* The constructor initializes the values, start, end, and root properties of an object.
* @param {number[]} values - An array of numbers that will be used to build a binary search tree.
* @param {number} [start] - The `start` parameter is the index of the first element in the `values` array that should
* be included in the range. If no value is provided for `start`, it defaults to 0, which means the range starts from
* the beginning of the array.
* @param {number} [end] - The "end" parameter is the index of the last element in the "values" array that should be
* included in the range. If not provided, it defaults to the index of the last element in the "values" array.
*/
constructor(values: number[], start?: number, end?: number) {
start = start || 0;
end = end || values.length - 1;
this._values = values;
this._start = start;
this._end = end;
this._root = this.build(start, end);
/**
* The constructor initializes the values, start, end, and root properties of an object.
* @param {number[]} values - An array of numbers that will be used to build a binary search tree.
* @param {number} [start] - The `start` parameter is the index of the first element in the `values` array that should
* be included in the range. If no value is provided for `start`, it defaults to 0, which means the range starts from
* the beginning of the array.
* @param {number} [end] - The "end" parameter is the index of the last element in the "values" array that should be
* included in the range. If not provided, it defaults to the index of the last element in the "values" array.
*/
constructor(values: number[], start?: number, end?: number) {
start = start || 0;
end = end || values.length - 1;
this._values = values;
this._start = start;
this._end = end;
this._root = this.build(start, end);
}
private _values: number[] = [];
get values(): number[] {
return this._values;
}
private _start = 0;
get start(): number {
return this._start;
}
private _end: number;
get end(): number {
return this._end;
}
private _root: SegmentTreeNode | null;
get root(): SegmentTreeNode | null {
return this._root;
}
/**
* The function builds a segment tree by recursively dividing the given range into smaller segments and creating nodes
* for each segment.
* @param {number} start - The `start` parameter represents the starting index of the segment or range for which we are
* building the segment tree.
* @param {number} end - The `end` parameter represents the ending index of the segment or range for which we are
* building the segment tree.
* @returns a SegmentTreeNode object.
*/
build(start: number, end: number): SegmentTreeNode {
if (start === end) return new SegmentTreeNode(start, end, this._values[start]);
const mid = start + Math.floor((end - start) / 2);
const left = this.build(start, mid);
const right = this.build(mid + 1, end);
const cur = new SegmentTreeNode(start, end, left.sum + right.sum);
cur.left = left;
cur.right = right;
return cur;
}
/**
* The function updates the value of a node in a segment tree and recalculates the sum of its children if they exist.
* @param {number} index - The index parameter represents the index of the node in the segment tree that needs to be
* updated.
* @param {number} sum - The `sum` parameter represents the new value that should be assigned to the `sum` property of
* the `SegmentTreeNode` at the specified `index`.
* @param {SegmentTreeNodeVal} [val] - The `val` parameter is an optional value that can be assigned to the `val`
* property of the `SegmentTreeNode` object. It is not currently used in the code, but you can uncomment the line `//
* cur.val = val;` and pass a value for `val` in the
* @returns The function does not return anything.
*/
updateNode(index: number, sum: number, val?: SegmentTreeNodeVal) {
const root = this.root || null;
if (!root) {
return;
}
private _values: number[] = [];
get values(): number[] {
return this._values;
}
private _start = 0;
get start(): number {
return this._start;
}
private _end: number;
get end(): number {
return this._end;
}
private _root: SegmentTreeNode | null;
get root(): SegmentTreeNode | null {
return this._root;
}
/**
* The function builds a segment tree by recursively dividing the given range into smaller segments and creating nodes
* for each segment.
* @param {number} start - The `start` parameter represents the starting index of the segment or range for which we are
* building the segment tree.
* @param {number} end - The `end` parameter represents the ending index of the segment or range for which we are
* building the segment tree.
* @returns a SegmentTreeNode object.
*/
build(start: number, end: number): SegmentTreeNode {
if (start === end) return new SegmentTreeNode(start, end, this._values[start]);
const mid = start + Math.floor((end - start) / 2);
const left = this.build(start, mid);
const right = this.build(mid + 1, end);
const cur = new SegmentTreeNode(start, end, left.sum + right.sum);
cur.left = left;
cur.right = right;
return cur;
}
/**
* The function updates the value of a node in a segment tree and recalculates the sum of its children if they exist.
* @param {number} index - The index parameter represents the index of the node in the segment tree that needs to be
* updated.
* @param {number} sum - The `sum` parameter represents the new value that should be assigned to the `sum` property of
* the `SegmentTreeNode` at the specified `index`.
* @param {SegmentTreeNodeVal} [val] - The `val` parameter is an optional value that can be assigned to the `val`
* property of the `SegmentTreeNode` object. It is not currently used in the code, but you can uncomment the line `//
* cur.val = val;` and pass a value for `val` in the
* @returns The function does not return anything.
*/
updateNode(index: number, sum: number, val?: SegmentTreeNodeVal) {
const root = this.root || null;
if (!root) {
return;
const dfs = (cur: SegmentTreeNode, index: number, sum: number, val?: SegmentTreeNodeVal) => {
if (cur.start === cur.end && cur.start === index) {
cur.sum = sum;
// cur.val = val;
return;
}
const mid = cur.start + Math.floor((cur.end - cur.start) / 2);
if (index <= mid) {
if (cur.left) {
dfs(cur.left, index, sum, val);
}
const dfs = (cur: SegmentTreeNode, index: number, sum: number, val?: SegmentTreeNodeVal) => {
if (cur.start === cur.end && cur.start === index) {
cur.sum = sum;
// cur.val = val;
return;
}
const mid = cur.start + Math.floor((cur.end - cur.start) / 2);
if (index <= mid) {
if (cur.left) {
dfs(cur.left, index, sum, val);
}
} else {
if (cur.right) {
dfs(cur.right, index, sum, val);
}
}
if (cur.left && cur.right) {
cur.sum = cur.left.sum + cur.right.sum;
}
};
dfs(root, index, sum);
}
/**
* The function `querySumByRange` calculates the sum of values within a given range in a segment tree.
* @param {number} indexA - The starting index of the range for which you want to calculate the sum.
* @param {number} indexB - The parameter `indexB` represents the ending index of the range for which you want to
* calculate the sum.
* @returns The function `querySumByRange` returns a number.
*/
querySumByRange(indexA: number, indexB: number): number {
const root = this.root || null;
if (!root) {
return 0;
} else {
if (cur.right) {
dfs(cur.right, index, sum, val);
}
}
if (cur.left && cur.right) {
cur.sum = cur.left.sum + cur.right.sum;
}
};
const dfs = (cur: SegmentTreeNode, i: number, j: number): number => {
if (cur.start === i && cur.end === j) {
return cur.sum;
}
const mid = cur.start + Math.floor((cur.end - cur.start) / 2);
if (j <= mid) {
// TODO after no-non-null-assertion not ensure the logic
if (cur.left) {
return dfs(cur.left, i, j);
} else {
return NaN;
}
} else if (i > mid) {
// TODO after no-non-null-assertion not ensure the logic
if (cur.right) {
// TODO after no-non-null-assertion not ensure the logic
return dfs(cur.right, i, j);
dfs(root, index, sum);
}
} else {
return NaN;
}
} else {
// TODO after no-non-null-assertion not ensure the logic
if (cur.left && cur.right) {
return dfs(cur.left, i, mid) + dfs(cur.right, mid + 1, j);
} else {
return NaN;
}
}
};
return dfs(root, indexA, indexB);
/**
* The function `querySumByRange` calculates the sum of values within a given range in a segment tree.
* @param {number} indexA - The starting index of the range for which you want to calculate the sum.
* @param {number} indexB - The parameter `indexB` represents the ending index of the range for which you want to
* calculate the sum.
* @returns The function `querySumByRange` returns a number.
*/
querySumByRange(indexA: number, indexB: number): number {
const root = this.root || null;
if (!root) {
return 0;
}
protected _setValues(value: number[]) {
this._values = value;
}
const dfs = (cur: SegmentTreeNode, i: number, j: number): number => {
if (cur.start === i && cur.end === j) {
return cur.sum;
}
const mid = cur.start + Math.floor((cur.end - cur.start) / 2);
if (j <= mid) {
// TODO after no-non-null-assertion not ensure the logic
if (cur.left) {
return dfs(cur.left, i, j);
} else {
return NaN;
}
} else if (i > mid) {
// TODO after no-non-null-assertion not ensure the logic
if (cur.right) {
// TODO after no-non-null-assertion not ensure the logic
return dfs(cur.right, i, j);
protected _setStart(value: number) {
this._start = value;
}
} else {
return NaN;
}
} else {
// TODO after no-non-null-assertion not ensure the logic
if (cur.left && cur.right) {
return dfs(cur.left, i, mid) + dfs(cur.right, mid + 1, j);
} else {
return NaN;
}
}
};
return dfs(root, indexA, indexB);
}
protected _setEnd(value: number) {
this._end = value;
}
protected _setValues(value: number[]) {
this._values = value;
}
protected _setRoot(v: SegmentTreeNode | null) {
this._root = v;
}
protected _setStart(value: number) {
this._start = value;
}
protected _setEnd(value: number) {
this._end = value;
}
protected _setRoot(v: SegmentTreeNode | null) {
this._root = v;
}
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -11,462 +11,462 @@ import type {TopologicalStatus, VertexId} from '../../types';
import {IDirectedGraph} from '../../interfaces';
export class DirectedVertex<T = number> extends AbstractVertex<T> {
/**
* The constructor function initializes a vertex with an optional value.
* @param {VertexId} id - The `id` parameter is of type `VertexId` and represents the identifier of the vertex. It is
* used to uniquely identify the vertex within a graph or data structure.
* @param {T} [val] - The "val" parameter is an optional parameter of type T. It is used to initialize the value of the
* vertex. If no value is provided, the vertex will be initialized with a default value.
*/
constructor(id: VertexId, val?: T) {
super(id, val);
}
/**
* The constructor function initializes a vertex with an optional value.
* @param {VertexId} id - The `id` parameter is of type `VertexId` and represents the identifier of the vertex. It is
* used to uniquely identify the vertex within a graph or data structure.
* @param {T} [val] - The "val" parameter is an optional parameter of type T. It is used to initialize the value of the
* vertex. If no value is provided, the vertex will be initialized with a default value.
*/
constructor(id: VertexId, val?: T) {
super(id, val);
}
}
export class DirectedEdge<T = number> extends AbstractEdge<T> {
/**
* The constructor function initializes the source and destination vertices of an edge, along with an optional weight
* and value.
* @param {VertexId} src - The `src` parameter is the source vertex ID. It represents the starting point of an edge in
* a graph.
* @param {VertexId} dest - The `dest` parameter represents the destination vertex of an edge. It is of type
* `VertexId`, which is likely a unique identifier for a vertex in a graph.
* @param {number} [weight] - The weight parameter is an optional number that represents the weight of the edge.
* @param {T} [val] - The `val` parameter is an optional parameter of type `T`. It represents the value associated with
* the edge.
*/
constructor(src: VertexId, dest: VertexId, weight?: number, val?: T) {
super(weight, val);
this._src = src;
this._dest = dest;
}
/**
* The constructor function initializes the source and destination vertices of an edge, along with an optional weight
* and value.
* @param {VertexId} src - The `src` parameter is the source vertex ID. It represents the starting point of an edge in
* a graph.
* @param {VertexId} dest - The `dest` parameter represents the destination vertex of an edge. It is of type
* `VertexId`, which is likely a unique identifier for a vertex in a graph.
* @param {number} [weight] - The weight parameter is an optional number that represents the weight of the edge.
* @param {T} [val] - The `val` parameter is an optional parameter of type `T`. It represents the value associated with
* the edge.
*/
constructor(src: VertexId, dest: VertexId, weight?: number, val?: T) {
super(weight, val);
this._src = src;
this._dest = dest;
}
private _src: VertexId;
private _src: VertexId;
get src(): VertexId {
return this._src;
}
get src(): VertexId {
return this._src;
}
set src(v: VertexId) {
this._src = v;
}
set src(v: VertexId) {
this._src = v;
}
private _dest: VertexId;
private _dest: VertexId;
get dest(): VertexId {
return this._dest;
}
get dest(): VertexId {
return this._dest;
}
set dest(v: VertexId) {
this._dest = v;
}
set dest(v: VertexId) {
this._dest = v;
}
}
export class DirectedGraph<V extends DirectedVertex<any> = DirectedVertex, E extends DirectedEdge<any> = DirectedEdge> extends AbstractGraph<V, E> implements IDirectedGraph<V, E> {
/**
* The constructor function initializes an instance of a class.
*/
constructor() {
super();
}
/**
* The constructor function initializes an instance of a class.
*/
constructor() {
super();
}
private _outEdgeMap: Map<V, E[]> = new Map<V, E[]>();
private _outEdgeMap: Map<V, E[]> = new Map<V, E[]>();
get outEdgeMap(): Map<V, E[]> {
return this._outEdgeMap;
}
get outEdgeMap(): Map<V, E[]> {
return this._outEdgeMap;
}
private _inEdgeMap: Map<V, E[]> = new Map<V, E[]>();
private _inEdgeMap: Map<V, E[]> = new Map<V, E[]>();
get inEdgeMap(): Map<V, E[]> {
return this._inEdgeMap;
}
get inEdgeMap(): Map<V, E[]> {
return this._inEdgeMap;
}
/**
* In TypeScript, a subclass inherits the interface implementation of its parent class, without needing to implement the same interface again in the subclass. This behavior differs from Java's approach. In Java, if a parent class implements an interface, the subclass needs to explicitly implement the same interface, even if the parent class has already implemented it.
* This means that using abstract methods in the parent class cannot constrain the grandchild classes. Defining methods within an interface also cannot constrain the descendant classes. When inheriting from this class, developers need to be aware that this method needs to be overridden.
*/
/**
* In TypeScript, a subclass inherits the interface implementation of its parent class, without needing to implement the same interface again in the subclass. This behavior differs from Java's approach. In Java, if a parent class implements an interface, the subclass needs to explicitly implement the same interface, even if the parent class has already implemented it.
* This means that using abstract methods in the parent class cannot constrain the grandchild classes. Defining methods within an interface also cannot constrain the descendant classes. When inheriting from this class, developers need to be aware that this method needs to be overridden.
*/
/**
* The function creates a new vertex with an optional value and returns it.
* @param {VertexId} id - The `id` parameter is the unique identifier for the vertex. It is of type `VertexId`, which
* could be a number or a string depending on how you want to identify your vertices.
* @param [val] - The 'val' parameter is an optional value that can be assigned to the vertex. If a value is provided,
* it will be assigned to the 'val' property of the vertex. If no value is provided, the 'val' property will be
* assigned the same value as the 'id' parameter
* @returns a new instance of a DirectedVertex object, casted as type V.
*/
createVertex(id: VertexId, val?: V['val']): V {
return new DirectedVertex(id, val ?? id) as V;
}
/**
* The function creates a new vertex with an optional value and returns it.
* @param {VertexId} id - The `id` parameter is the unique identifier for the vertex. It is of type `VertexId`, which
* could be a number or a string depending on how you want to identify your vertices.
* @param [val] - The 'val' parameter is an optional value that can be assigned to the vertex. If a value is provided,
* it will be assigned to the 'val' property of the vertex. If no value is provided, the 'val' property will be
* assigned the same value as the 'id' parameter
* @returns a new instance of a DirectedVertex object, casted as type V.
*/
createVertex(id: VertexId, val?: V['val']): V {
return new DirectedVertex(id, val ?? id) as V;
}
/**
* In TypeScript, a subclass inherits the interface implementation of its parent class, without needing to implement the same interface again in the subclass. This behavior differs from Java's approach. In Java, if a parent class implements an interface, the subclass needs to explicitly implement the same interface, even if the parent class has already implemented it.
* This means that using abstract methods in the parent class cannot constrain the grandchild classes. Defining methods within an interface also cannot constrain the descendant classes. When inheriting from this class, developers need to be aware that this method needs to be overridden.
*/
/**
* In TypeScript, a subclass inherits the interface implementation of its parent class, without needing to implement the same interface again in the subclass. This behavior differs from Java's approach. In Java, if a parent class implements an interface, the subclass needs to explicitly implement the same interface, even if the parent class has already implemented it.
* This means that using abstract methods in the parent class cannot constrain the grandchild classes. Defining methods within an interface also cannot constrain the descendant classes. When inheriting from this class, developers need to be aware that this method needs to be overridden.
*/
/**
* The function creates a directed edge between two vertices with an optional weight and value.
* @param {VertexId} src - The source vertex ID of the edge. It represents the starting point of the edge.
* @param {VertexId} dest - The `dest` parameter is the identifier of the destination vertex for the edge.
* @param {number} [weight] - The weight parameter is an optional number that represents the weight of the edge. If no
* weight is provided, it defaults to 1.
* @param [val] - The 'val' parameter is an optional value that can be assigned to the edge. It can be of any type and
* is used to store additional information or data associated with the edge.
* @returns a new instance of a DirectedEdge object, casted as type E.
*/
createEdge(src: VertexId, dest: VertexId, weight?: number, val?: E['val']): E {
return new DirectedEdge(src, dest, weight ?? 1, val) as E;
}
/**
* The function creates a directed edge between two vertices with an optional weight and value.
* @param {VertexId} src - The source vertex ID of the edge. It represents the starting point of the edge.
* @param {VertexId} dest - The `dest` parameter is the identifier of the destination vertex for the edge.
* @param {number} [weight] - The weight parameter is an optional number that represents the weight of the edge. If no
* weight is provided, it defaults to 1.
* @param [val] - The 'val' parameter is an optional value that can be assigned to the edge. It can be of any type and
* is used to store additional information or data associated with the edge.
* @returns a new instance of a DirectedEdge object, casted as type E.
*/
createEdge(src: VertexId, dest: VertexId, weight?: number, val?: E['val']): E {
return new DirectedEdge(src, dest, weight ?? 1, val) as E;
}
/**
* The `getEdge` function retrieves an edge between two vertices based on their source and destination IDs.
* @param {V | null | VertexId} srcOrId - The source vertex or its ID. It can be either a vertex object or a vertex ID.
* @param {V | null | VertexId} destOrId - The `destOrId` parameter in the `getEdge` function represents the
* destination vertex of the edge. It can be either a vertex object (`V`), a vertex ID (`VertexId`), or `null` if the
* destination is not specified.
* @returns the first edge found between the source and destination vertices, or null if no such edge is found.
*/
getEdge(srcOrId: V | null | VertexId, destOrId: V | null | VertexId): E | null {
let edges: E[] = [];
/**
* The `getEdge` function retrieves an edge between two vertices based on their source and destination IDs.
* @param {V | null | VertexId} srcOrId - The source vertex or its ID. It can be either a vertex object or a vertex ID.
* @param {V | null | VertexId} destOrId - The `destOrId` parameter in the `getEdge` function represents the
* destination vertex of the edge. It can be either a vertex object (`V`), a vertex ID (`VertexId`), or `null` if the
* destination is not specified.
* @returns the first edge found between the source and destination vertices, or null if no such edge is found.
*/
getEdge(srcOrId: V | null | VertexId, destOrId: V | null | VertexId): E | null {
let edges: E[] = [];
if (srcOrId !== null && destOrId !== null) {
const src: V | null = this._getVertex(srcOrId);
const dest: V | null = this._getVertex(destOrId);
if (src && dest) {
const srcOutEdges = this._outEdgeMap.get(src);
if (srcOutEdges) {
edges = srcOutEdges.filter(edge => edge.dest === dest.id);
}
}
}
return edges[0] || null;
}
/**
* The function removes an edge between two vertices in a graph and returns the removed edge.
* @param {V | VertexId} srcOrId - The source vertex or its ID.
* @param {V | VertexId} destOrId - The `destOrId` parameter represents the destination vertex or its ID.
* @returns the removed edge (E) if it exists, or null if either the source or destination vertex does not exist.
*/
removeEdgeSrcToDest(srcOrId: V | VertexId, destOrId: V | VertexId): E | null {
const src: V | null = this._getVertex(srcOrId);
const dest: V | null = this._getVertex(destOrId);
let removed: E | null = null;
if (!src || !dest) {
return null;
}
if (srcOrId !== null && destOrId !== null) {
const src: V | null = this._getVertex(srcOrId);
const dest: V | null = this._getVertex(destOrId);
if (src && dest) {
const srcOutEdges = this._outEdgeMap.get(src);
if (srcOutEdges) {
arrayRemove<E>(srcOutEdges, (edge: E) => edge.dest === dest.id);
edges = srcOutEdges.filter(edge => edge.dest === dest.id);
}
}
}
const destInEdges = this._inEdgeMap.get(dest);
if (destInEdges) {
removed = arrayRemove<E>(destInEdges, (edge: E) => edge.src === src.id)[0] || null;
return edges[0] || null;
}
/**
* The function removes an edge between two vertices in a graph and returns the removed edge.
* @param {V | VertexId} srcOrId - The source vertex or its ID.
* @param {V | VertexId} destOrId - The `destOrId` parameter represents the destination vertex or its ID.
* @returns the removed edge (E) if it exists, or null if either the source or destination vertex does not exist.
*/
removeEdgeSrcToDest(srcOrId: V | VertexId, destOrId: V | VertexId): E | null {
const src: V | null = this._getVertex(srcOrId);
const dest: V | null = this._getVertex(destOrId);
let removed: E | null = null;
if (!src || !dest) {
return null;
}
const srcOutEdges = this._outEdgeMap.get(src);
if (srcOutEdges) {
arrayRemove<E>(srcOutEdges, (edge: E) => edge.dest === dest.id);
}
const destInEdges = this._inEdgeMap.get(dest);
if (destInEdges) {
removed = arrayRemove<E>(destInEdges, (edge: E) => edge.src === src.id)[0] || null;
}
return removed;
}
/**
* The function removes an edge from a graph and returns the removed edge, or null if the edge was not found.
* @param {E} edge - The `edge` parameter is an object that represents an edge in a graph. It has two properties: `src`
* and `dest`, which represent the source and destination vertices of the edge, respectively.
* @returns The method `removeEdge` returns the removed edge (`E`) if it exists, or `null` if the edge does not exist.
*/
removeEdge(edge: E): E | null {
let removed: E | null = null;
const src = this._getVertex(edge.src);
const dest = this._getVertex(edge.dest);
if (src && dest) {
const srcOutEdges = this._outEdgeMap.get(src);
if (srcOutEdges && srcOutEdges.length > 0) {
arrayRemove(srcOutEdges, (edge: E) => edge.src === src.id);
}
const destInEdges = this._inEdgeMap.get(dest);
if (destInEdges && destInEdges.length > 0) {
removed = arrayRemove(destInEdges, (edge: E) => edge.dest === dest.id)[0];
}
}
return removed;
}
/**
* The function removes edges between two vertices and returns the removed edges.
* @param {VertexId | V} v1 - The parameter `v1` can be either a `VertexId` or a `V`. A `VertexId` represents the
* unique identifier of a vertex in a graph, while `V` represents the actual vertex object.
* @param {VertexId | V} v2 - The parameter `v2` represents either a `VertexId` or a `V` object. It is used to specify
* the second vertex in the edge that needs to be removed.
* @returns an array of removed edges (E[]).
*/
removeEdgesBetween(v1: VertexId | V, v2: VertexId | V): E[] {
const removed: E[] = [];
if (v1 && v2) {
const v1ToV2 = this.removeEdgeSrcToDest(v1, v2);
const v2ToV1 = this.removeEdgeSrcToDest(v2, v1);
v1ToV2 && removed.push(v1ToV2);
v2ToV1 && removed.push(v2ToV1);
}
return removed;
}
/**
* The function `incomingEdgesOf` returns an array of incoming edges for a given vertex or vertex ID.
* @param {V | VertexId} vertexOrId - The parameter `vertexOrId` can be either a vertex object (`V`) or a vertex ID
* (`VertexId`).
* @returns The method `incomingEdgesOf` returns an array of edges (`E[]`).
*/
incomingEdgesOf(vertexOrId: V | VertexId): E[] {
const target = this._getVertex(vertexOrId);
if (target) {
return this.inEdgeMap.get(target) || []
}
return [];
}
/**
* The function `outgoingEdgesOf` returns an array of outgoing edges from a given vertex or vertex ID.
* @param {V | VertexId} vertexOrId - The parameter `vertexOrId` can accept either a vertex object (`V`) or a vertex ID
* (`VertexId`).
* @returns The method `outgoingEdgesOf` returns an array of edges (`E[]`).
*/
outgoingEdgesOf(vertexOrId: V | VertexId): E[] {
const target = this._getVertex(vertexOrId);
if (target) {
return this._outEdgeMap.get(target) || [];
}
return [];
}
/**
* The function "degreeOf" returns the total degree of a vertex, which is the sum of its out-degree and in-degree.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`.
* @returns The sum of the out-degree and in-degree of the specified vertex or vertex ID.
*/
degreeOf(vertexOrId: VertexId | V): number {
return this.outDegreeOf(vertexOrId) + this.inDegreeOf(vertexOrId);
}
/**
* The function "inDegreeOf" returns the number of incoming edges for a given vertex.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`.
* @returns The number of incoming edges of the specified vertex or vertex ID.
*/
inDegreeOf(vertexOrId: VertexId | V): number {
return this.incomingEdgesOf(vertexOrId).length;
}
/**
* The function `outDegreeOf` returns the number of outgoing edges from a given vertex.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`.
* @returns The number of outgoing edges from the specified vertex or vertex ID.
*/
outDegreeOf(vertexOrId: VertexId | V): number {
return this.outgoingEdgesOf(vertexOrId).length;
}
/**
* The function "edgesOf" returns an array of both outgoing and incoming edges of a given vertex or vertex ID.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`.
* @returns The function `edgesOf` returns an array of edges.
*/
edgesOf(vertexOrId: VertexId | V): E[] {
return [...this.outgoingEdgesOf(vertexOrId), ...this.incomingEdgesOf(vertexOrId)];
}
/**
* The function "getEdgeSrc" returns the source vertex of an edge, or null if the edge does not exist.
* @param {E} e - The parameter "e" is of type E, which represents an edge in a graph.
* @returns either a vertex object (V) or null.
*/
getEdgeSrc(e: E): V | null {
return this._getVertex(e.src);
}
/**
* The function "getEdgeDest" returns the destination vertex of an edge.
* @param {E} e - The parameter "e" is of type "E", which represents an edge in a graph.
* @returns either a vertex object of type V or null.
*/
getEdgeDest(e: E): V | null {
return this._getVertex(e.dest);
}
/**
* The function `getDestinations` returns an array of destination vertices connected to a given vertex.
* @param {V | VertexId | null} vertex - The `vertex` parameter represents the starting vertex from which we want to
* find the destinations. It can be either a `V` object, a `VertexId` value, or `null`.
* @returns an array of vertices (V[]).
*/
getDestinations(vertex: V | VertexId | null): V[] {
if (vertex === null) {
return [];
}
const destinations: V[] = [];
const outgoingEdges = this.outgoingEdgesOf(vertex);
for (const outEdge of outgoingEdges) {
const child = this.getEdgeDest(outEdge);
if (child) {
destinations.push(child);
}
}
return destinations;
}
/**
* The `topologicalSort` function performs a topological sort on a graph and returns an array of vertices or vertex IDs
* in the sorted order, or null if the graph contains a cycle.
* @param {'vertex' | 'id'} [propertyName] - The `propertyName` parameter is an optional parameter that specifies the
* property to use for sorting the vertices. It can have two possible values: 'vertex' or 'id'. If 'vertex' is
* specified, the vertices themselves will be used for sorting. If 'id' is specified, the ids of
* @returns an array of vertices or vertex IDs in topological order. If there is a cycle in the graph, it returns null.
*/
topologicalSort(propertyName?: 'vertex' | 'id'): Array<V | VertexId> | null {
propertyName = propertyName ?? 'id';
// When judging whether there is a cycle in the undirected graph, all nodes with degree of **<= 1** are enqueued
// When judging whether there is a cycle in the directed graph, all nodes with **in degree = 0** are enqueued
const statusMap: Map<V | VertexId, TopologicalStatus> = new Map<V | VertexId, TopologicalStatus>();
for (const entry of this.vertices) {
statusMap.set(entry[1], 0);
}
let sorted: (V | VertexId)[] = [];
let hasCycle = false;
const dfs = (cur: V | VertexId) => {
statusMap.set(cur, 1);
const children = this.getDestinations(cur);
for (const child of children) {
const childStatus = statusMap.get(child);
if (childStatus === 0) {
dfs(child);
} else if (childStatus === 1) {
hasCycle = true;
}
return removed;
}
statusMap.set(cur, 2);
sorted.push(cur);
};
for (const entry of this.vertices) {
if (statusMap.get(entry[1]) === 0) {
dfs(entry[1]);
}
}
/**
* The function removes an edge from a graph and returns the removed edge, or null if the edge was not found.
* @param {E} edge - The `edge` parameter is an object that represents an edge in a graph. It has two properties: `src`
* and `dest`, which represent the source and destination vertices of the edge, respectively.
* @returns The method `removeEdge` returns the removed edge (`E`) if it exists, or `null` if the edge does not exist.
*/
removeEdge(edge: E): E | null {
let removed: E | null = null;
const src = this._getVertex(edge.src);
const dest = this._getVertex(edge.dest);
if (src && dest) {
const srcOutEdges = this._outEdgeMap.get(src);
if (srcOutEdges && srcOutEdges.length > 0) {
arrayRemove(srcOutEdges, (edge: E) => edge.src === src.id);
}
if (hasCycle) return null;
const destInEdges = this._inEdgeMap.get(dest);
if (destInEdges && destInEdges.length > 0) {
removed = arrayRemove(destInEdges, (edge: E) => edge.dest === dest.id)[0];
}
if (propertyName === 'id') sorted = sorted.map(vertex => vertex instanceof DirectedVertex ? vertex.id : vertex);
return sorted.reverse();
}
}
return removed;
}
/**
* The function removes edges between two vertices and returns the removed edges.
* @param {VertexId | V} v1 - The parameter `v1` can be either a `VertexId` or a `V`. A `VertexId` represents the
* unique identifier of a vertex in a graph, while `V` represents the actual vertex object.
* @param {VertexId | V} v2 - The parameter `v2` represents either a `VertexId` or a `V` object. It is used to specify
* the second vertex in the edge that needs to be removed.
* @returns an array of removed edges (E[]).
*/
removeEdgesBetween(v1: VertexId | V, v2: VertexId | V): E[] {
const removed: E[] = [];
if (v1 && v2) {
const v1ToV2 = this.removeEdgeSrcToDest(v1, v2);
const v2ToV1 = this.removeEdgeSrcToDest(v2, v1);
v1ToV2 && removed.push(v1ToV2);
v2ToV1 && removed.push(v2ToV1);
}
return removed;
}
/**
* The function `incomingEdgesOf` returns an array of incoming edges for a given vertex or vertex ID.
* @param {V | VertexId} vertexOrId - The parameter `vertexOrId` can be either a vertex object (`V`) or a vertex ID
* (`VertexId`).
* @returns The method `incomingEdgesOf` returns an array of edges (`E[]`).
*/
incomingEdgesOf(vertexOrId: V | VertexId): E[] {
const target = this._getVertex(vertexOrId);
if (target) {
return this.inEdgeMap.get(target) || []
}
return [];
}
/**
* The function `outgoingEdgesOf` returns an array of outgoing edges from a given vertex or vertex ID.
* @param {V | VertexId} vertexOrId - The parameter `vertexOrId` can accept either a vertex object (`V`) or a vertex ID
* (`VertexId`).
* @returns The method `outgoingEdgesOf` returns an array of edges (`E[]`).
*/
outgoingEdgesOf(vertexOrId: V | VertexId): E[] {
const target = this._getVertex(vertexOrId);
if (target) {
return this._outEdgeMap.get(target) || [];
}
return [];
}
/**
* The function "degreeOf" returns the total degree of a vertex, which is the sum of its out-degree and in-degree.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`.
* @returns The sum of the out-degree and in-degree of the specified vertex or vertex ID.
*/
degreeOf(vertexOrId: VertexId | V): number {
return this.outDegreeOf(vertexOrId) + this.inDegreeOf(vertexOrId);
}
/**
* The function "inDegreeOf" returns the number of incoming edges for a given vertex.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`.
* @returns The number of incoming edges of the specified vertex or vertex ID.
*/
inDegreeOf(vertexOrId: VertexId | V): number {
return this.incomingEdgesOf(vertexOrId).length;
}
/**
* The function `outDegreeOf` returns the number of outgoing edges from a given vertex.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`.
* @returns The number of outgoing edges from the specified vertex or vertex ID.
*/
outDegreeOf(vertexOrId: VertexId | V): number {
return this.outgoingEdgesOf(vertexOrId).length;
}
/**
* The function "edgesOf" returns an array of both outgoing and incoming edges of a given vertex or vertex ID.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`.
* @returns The function `edgesOf` returns an array of edges.
*/
edgesOf(vertexOrId: VertexId | V): E[] {
return [...this.outgoingEdgesOf(vertexOrId), ...this.incomingEdgesOf(vertexOrId)];
}
/**
* The function "getEdgeSrc" returns the source vertex of an edge, or null if the edge does not exist.
* @param {E} e - The parameter "e" is of type E, which represents an edge in a graph.
* @returns either a vertex object (V) or null.
*/
getEdgeSrc(e: E): V | null {
return this._getVertex(e.src);
}
/**
* The function "getEdgeDest" returns the destination vertex of an edge.
* @param {E} e - The parameter "e" is of type "E", which represents an edge in a graph.
* @returns either a vertex object of type V or null.
*/
getEdgeDest(e: E): V | null {
return this._getVertex(e.dest);
}
/**
* The function `getDestinations` returns an array of destination vertices connected to a given vertex.
* @param {V | VertexId | null} vertex - The `vertex` parameter represents the starting vertex from which we want to
* find the destinations. It can be either a `V` object, a `VertexId` value, or `null`.
* @returns an array of vertices (V[]).
*/
getDestinations(vertex: V | VertexId | null): V[] {
if (vertex === null) {
return [];
}
const destinations: V[] = [];
const outgoingEdges = this.outgoingEdgesOf(vertex);
for (const outEdge of outgoingEdges) {
const child = this.getEdgeDest(outEdge);
if (child) {
destinations.push(child);
}
}
return destinations;
}
/**
* The `topologicalSort` function performs a topological sort on a graph and returns an array of vertices or vertex IDs
* in the sorted order, or null if the graph contains a cycle.
* @param {'vertex' | 'id'} [propertyName] - The `propertyName` parameter is an optional parameter that specifies the
* property to use for sorting the vertices. It can have two possible values: 'vertex' or 'id'. If 'vertex' is
* specified, the vertices themselves will be used for sorting. If 'id' is specified, the ids of
* @returns an array of vertices or vertex IDs in topological order. If there is a cycle in the graph, it returns null.
*/
topologicalSort(propertyName?: 'vertex' | 'id'): Array<V | VertexId> | null {
propertyName = propertyName ?? 'id';
// When judging whether there is a cycle in the undirected graph, all nodes with degree of **<= 1** are enqueued
// When judging whether there is a cycle in the directed graph, all nodes with **in degree = 0** are enqueued
const statusMap: Map<V | VertexId, TopologicalStatus> = new Map<V | VertexId, TopologicalStatus>();
for (const entry of this.vertices) {
statusMap.set(entry[1], 0);
}
let sorted: (V | VertexId)[] = [];
let hasCycle = false;
const dfs = (cur: V | VertexId) => {
statusMap.set(cur, 1);
const children = this.getDestinations(cur);
for (const child of children) {
const childStatus = statusMap.get(child);
if (childStatus === 0) {
dfs(child);
} else if (childStatus === 1) {
hasCycle = true;
}
}
statusMap.set(cur, 2);
sorted.push(cur);
};
for (const entry of this.vertices) {
if (statusMap.get(entry[1]) === 0) {
dfs(entry[1]);
}
}
if (hasCycle) return null;
if (propertyName === 'id') sorted = sorted.map(vertex => vertex instanceof DirectedVertex ? vertex.id : vertex);
return sorted.reverse();
}
/**
* The `edgeSet` function returns an array of all the edges in the graph.
* @returns The `edgeSet()` method returns an array of edges (`E[]`).
*/
edgeSet(): E[] {
let edges: E[] = [];
this._outEdgeMap.forEach(outEdges => {
edges = [...edges, ...outEdges];
});
return edges;
}
/**
* The function `getNeighbors` returns an array of neighboring vertices of a given vertex or vertex ID in a graph.
* @param {V | VertexId} vertexOrId - The parameter `vertexOrId` can be either a vertex object (`V`) or a vertex ID
* (`VertexId`).
* @returns an array of vertices (V[]).
*/
getNeighbors(vertexOrId: V | VertexId): V[] {
const neighbors: V[] = [];
const vertex = this._getVertex(vertexOrId);
if (vertex) {
const outEdges = this.outgoingEdgesOf(vertex);
for (const outEdge of outEdges) {
const neighbor = this._getVertex(outEdge.dest);
// TODO after no-non-null-assertion not ensure the logic
if (neighbor) {
neighbors.push(neighbor);
}
}
}
return neighbors;
}
/**
* The function "getEndsOfEdge" returns the source and destination vertices of an edge if it exists in the graph,
* otherwise it returns null.
* @param {E} edge - The parameter `edge` is of type `E`, which represents an edge in a graph.
* @returns The function `getEndsOfEdge` returns an array containing two vertices `[V, V]` if the edge exists in the
* graph. If the edge does not exist, it returns `null`.
*/
getEndsOfEdge(edge: E): [V, V] | null {
if (!this.hasEdge(edge.src, edge.dest)) {
return null;
}
const v1 = this._getVertex(edge.src);
const v2 = this._getVertex(edge.dest);
if (v1 && v2) {
return [v1, v2];
} else {
return null;
}
}
/**
* The function `_addEdgeOnly` adds an edge to a graph if the source and destination vertices exist.
* @param {E} edge - The parameter `edge` is of type `E`, which represents an edge in a graph. It is the edge that
* needs to be added to the graph.
* @returns a boolean value. It returns true if the edge was successfully added to the graph, and false if either the
* source or destination vertex does not exist in the graph.
*/
protected _addEdgeOnly(edge: E): boolean {
if (!(this.hasVertex(edge.src) && this.hasVertex(edge.dest))) {
return false;
}
const srcVertex = this._getVertex(edge.src);
const destVertex = this._getVertex(edge.dest);
/**
* The `edgeSet` function returns an array of all the edges in the graph.
* @returns The `edgeSet()` method returns an array of edges (`E[]`).
*/
edgeSet(): E[] {
let edges: E[] = [];
this._outEdgeMap.forEach(outEdges => {
edges = [...edges, ...outEdges];
});
return edges;
}
/**
* The function `getNeighbors` returns an array of neighboring vertices of a given vertex or vertex ID in a graph.
* @param {V | VertexId} vertexOrId - The parameter `vertexOrId` can be either a vertex object (`V`) or a vertex ID
* (`VertexId`).
* @returns an array of vertices (V[]).
*/
getNeighbors(vertexOrId: V | VertexId): V[] {
const neighbors: V[] = [];
const vertex = this._getVertex(vertexOrId);
if (vertex) {
const outEdges = this.outgoingEdgesOf(vertex);
for (const outEdge of outEdges) {
const neighbor = this._getVertex(outEdge.dest);
// TODO after no-non-null-assertion not ensure the logic
if (srcVertex && destVertex) {
const srcOutEdges = this._outEdgeMap.get(srcVertex);
if (srcOutEdges) {
srcOutEdges.push(edge);
} else {
this._outEdgeMap.set(srcVertex, [edge]);
}
const destInEdges = this._inEdgeMap.get(destVertex);
if (destInEdges) {
destInEdges.push(edge);
} else {
this._inEdgeMap.set(destVertex, [edge]);
}
return true;
} else {
return false;
if (neighbor) {
neighbors.push(neighbor);
}
}
}
return neighbors;
}
/**
* The function "getEndsOfEdge" returns the source and destination vertices of an edge if it exists in the graph,
* otherwise it returns null.
* @param {E} edge - The parameter `edge` is of type `E`, which represents an edge in a graph.
* @returns The function `getEndsOfEdge` returns an array containing two vertices `[V, V]` if the edge exists in the
* graph. If the edge does not exist, it returns `null`.
*/
getEndsOfEdge(edge: E): [V, V] | null {
if (!this.hasEdge(edge.src, edge.dest)) {
return null;
}
const v1 = this._getVertex(edge.src);
const v2 = this._getVertex(edge.dest);
if (v1 && v2) {
return [v1, v2];
} else {
return null;
}
}
/**
* The function `_addEdgeOnly` adds an edge to a graph if the source and destination vertices exist.
* @param {E} edge - The parameter `edge` is of type `E`, which represents an edge in a graph. It is the edge that
* needs to be added to the graph.
* @returns a boolean value. It returns true if the edge was successfully added to the graph, and false if either the
* source or destination vertex does not exist in the graph.
*/
protected _addEdgeOnly(edge: E): boolean {
if (!(this.hasVertex(edge.src) && this.hasVertex(edge.dest))) {
return false;
}
protected _setOutEdgeMap(value: Map<V, E[]>) {
this._outEdgeMap = value;
}
const srcVertex = this._getVertex(edge.src);
const destVertex = this._getVertex(edge.dest);
protected _setInEdgeMap(value: Map<V, E[]>) {
this._inEdgeMap = value;
// TODO after no-non-null-assertion not ensure the logic
if (srcVertex && destVertex) {
const srcOutEdges = this._outEdgeMap.get(srcVertex);
if (srcOutEdges) {
srcOutEdges.push(edge);
} else {
this._outEdgeMap.set(srcVertex, [edge]);
}
const destInEdges = this._inEdgeMap.get(destVertex);
if (destInEdges) {
destInEdges.push(edge);
} else {
this._inEdgeMap.set(destVertex, [edge]);
}
return true;
} else {
return false;
}
}
protected _setOutEdgeMap(value: Map<V, E[]>) {
this._outEdgeMap = value;
}
protected _setInEdgeMap(value: Map<V, E[]>) {
this._inEdgeMap = value;
}
}

View file

@ -2,127 +2,127 @@ import {MapGraphCoordinate, VertexId} from '../../types';
import {DirectedEdge, DirectedGraph, DirectedVertex} from './directed-graph';
export class MapVertex<T = any> extends DirectedVertex<T> {
/**
* The constructor function initializes an object with an id, latitude, longitude, and an optional value.
* @param {VertexId} id - The `id` parameter is of type `VertexId` and represents the identifier of the vertex.
* @param {number} lat - The "lat" parameter represents the latitude of a vertex. Latitude is a geographic coordinate
* that specifies the north-south position of a point on the Earth's surface. It is measured in degrees, with positive
* values representing points north of the equator and negative values representing points south of the equator.
* @param {number} long - The "long" parameter represents the longitude of a location. Longitude is a geographic
* coordinate that specifies the east-west position of a point on the Earth's surface. It is measured in degrees, with
* values ranging from -180 to 180.
* @param {T} [val] - The "val" parameter is an optional value of type T. It is not required to be provided when
* creating an instance of the class.
*/
constructor(id: VertexId, lat: number, long: number, val?: T) {
super(id, val);
this._lat = lat;
this._long = long;
}
/**
* The constructor function initializes an object with an id, latitude, longitude, and an optional value.
* @param {VertexId} id - The `id` parameter is of type `VertexId` and represents the identifier of the vertex.
* @param {number} lat - The "lat" parameter represents the latitude of a vertex. Latitude is a geographic coordinate
* that specifies the north-south position of a point on the Earth's surface. It is measured in degrees, with positive
* values representing points north of the equator and negative values representing points south of the equator.
* @param {number} long - The "long" parameter represents the longitude of a location. Longitude is a geographic
* coordinate that specifies the east-west position of a point on the Earth's surface. It is measured in degrees, with
* values ranging from -180 to 180.
* @param {T} [val] - The "val" parameter is an optional value of type T. It is not required to be provided when
* creating an instance of the class.
*/
constructor(id: VertexId, lat: number, long: number, val?: T) {
super(id, val);
this._lat = lat;
this._long = long;
}
private _lat: number;
private _lat: number;
get lat(): number {
return this._lat;
}
get lat(): number {
return this._lat;
}
set lat(value: number) {
this._lat = value;
}
set lat(value: number) {
this._lat = value;
}
private _long: number;
private _long: number;
get long(): number {
return this._long;
}
get long(): number {
return this._long;
}
set long(value: number) {
this._long = value;
}
set long(value: number) {
this._long = value;
}
}
export class MapEdge<T = any> extends DirectedEdge<T> {
/**
* The constructor function initializes a new instance of a class with the given source, destination, weight, and
* value.
* @param {VertexId} src - The `src` parameter is the source vertex ID. It represents the starting point of an edge in
* a graph.
* @param {VertexId} dest - The `dest` parameter is the identifier of the destination vertex for an edge.
* @param {number} [weight] - The weight parameter is an optional number that represents the weight of the edge.
* @param {T} [val] - The "val" parameter is an optional parameter of type T. It is used to store additional
* information or data associated with the edge.
*/
constructor(src: VertexId, dest: VertexId, weight?: number, val?: T) {
super(src, dest, weight, val);
}
/**
* The constructor function initializes a new instance of a class with the given source, destination, weight, and
* value.
* @param {VertexId} src - The `src` parameter is the source vertex ID. It represents the starting point of an edge in
* a graph.
* @param {VertexId} dest - The `dest` parameter is the identifier of the destination vertex for an edge.
* @param {number} [weight] - The weight parameter is an optional number that represents the weight of the edge.
* @param {T} [val] - The "val" parameter is an optional parameter of type T. It is used to store additional
* information or data associated with the edge.
*/
constructor(src: VertexId, dest: VertexId, weight?: number, val?: T) {
super(src, dest, weight, val);
}
}
export class MapGraph<V extends MapVertex<V['val']> = MapVertex, E extends MapEdge = MapEdge> extends DirectedGraph<V, E> {
/**
* The constructor function initializes the origin and bottomRight properties of a MapGraphCoordinate object.
* @param {MapGraphCoordinate} origin - The `origin` parameter is a `MapGraphCoordinate` object that represents the
* starting point or reference point of the map graph. It defines the coordinates of the top-left corner of the map
* graph.
* @param {MapGraphCoordinate} [bottomRight] - The `bottomRight` parameter is an optional parameter of type
* `MapGraphCoordinate`. It represents the bottom right coordinate of a map graph. If this parameter is not provided,
* it will default to `undefined`.
*/
constructor(origin: MapGraphCoordinate, bottomRight?: MapGraphCoordinate) {
super();
this._origin = origin;
this._bottomRight = bottomRight;
}
/**
* The constructor function initializes the origin and bottomRight properties of a MapGraphCoordinate object.
* @param {MapGraphCoordinate} origin - The `origin` parameter is a `MapGraphCoordinate` object that represents the
* starting point or reference point of the map graph. It defines the coordinates of the top-left corner of the map
* graph.
* @param {MapGraphCoordinate} [bottomRight] - The `bottomRight` parameter is an optional parameter of type
* `MapGraphCoordinate`. It represents the bottom right coordinate of a map graph. If this parameter is not provided,
* it will default to `undefined`.
*/
constructor(origin: MapGraphCoordinate, bottomRight?: MapGraphCoordinate) {
super();
this._origin = origin;
this._bottomRight = bottomRight;
}
private _origin: MapGraphCoordinate = [0, 0];
private _origin: MapGraphCoordinate = [0, 0];
get origin(): MapGraphCoordinate {
return this._origin;
}
get origin(): MapGraphCoordinate {
return this._origin;
}
set origin(value: MapGraphCoordinate) {
this._origin = value;
}
set origin(value: MapGraphCoordinate) {
this._origin = value;
}
private _bottomRight: MapGraphCoordinate | undefined;
private _bottomRight: MapGraphCoordinate | undefined;
get bottomRight(): MapGraphCoordinate | undefined {
return this._bottomRight;
}
get bottomRight(): MapGraphCoordinate | undefined {
return this._bottomRight;
}
set bottomRight(value: MapGraphCoordinate | undefined) {
this._bottomRight = value;
}
set bottomRight(value: MapGraphCoordinate | undefined) {
this._bottomRight = value;
}
/**
* The function creates a new vertex with the given id, value, latitude, and longitude.
* @param {VertexId} id - The id parameter is the unique identifier for the vertex. It is of type VertexId, which could
* be a string or a number depending on how you define it in your code.
* @param [val] - The `val` parameter is an optional value that can be assigned to the `val` property of the vertex. It
* is of type `V['val']`, which means it should be of the same type as the `val` property of the vertex class `V`.
* @param {number} lat - The `lat` parameter represents the latitude of the vertex. It is a number that specifies the
* position of the vertex on the Earth's surface in the north-south direction.
* @param {number} long - The `long` parameter represents the longitude coordinate of the vertex.
* @returns The method is returning a new instance of the `MapVertex` class, casted as type `V`.
*/
override createVertex(id: VertexId, val?: V['val'], lat: number = this.origin[0], long: number = this.origin[1]): V {
return new MapVertex(id, lat, long, val) as V;
}
/**
* The function creates a new vertex with the given id, value, latitude, and longitude.
* @param {VertexId} id - The id parameter is the unique identifier for the vertex. It is of type VertexId, which could
* be a string or a number depending on how you define it in your code.
* @param [val] - The `val` parameter is an optional value that can be assigned to the `val` property of the vertex. It
* is of type `V['val']`, which means it should be of the same type as the `val` property of the vertex class `V`.
* @param {number} lat - The `lat` parameter represents the latitude of the vertex. It is a number that specifies the
* position of the vertex on the Earth's surface in the north-south direction.
* @param {number} long - The `long` parameter represents the longitude coordinate of the vertex.
* @returns The method is returning a new instance of the `MapVertex` class, casted as type `V`.
*/
override createVertex(id: VertexId, val?: V['val'], lat: number = this.origin[0], long: number = this.origin[1]): V {
return new MapVertex(id, lat, long, val) as V;
}
/**
* The function creates a new instance of a MapEdge with the given source, destination, weight, and value.
* @param {VertexId} src - The source vertex ID of the edge. It represents the starting point of the edge.
* @param {VertexId} dest - The `dest` parameter is the identifier of the destination vertex for the edge being
* created.
* @param {number} [weight] - The `weight` parameter is an optional number that represents the weight of the edge. It
* is used to assign a numerical value to the edge, which can be used in algorithms such as shortest path algorithms.
* If the weight is not provided, it can be set to a default value or left undefined.
* @param [val] - The `val` parameter is an optional value that can be assigned to the edge. It can be of any type,
* depending on the specific implementation of the `MapEdge` class.
* @returns a new instance of the `MapEdge` class, casted as type `E`.
*/
override createEdge(src: VertexId, dest: VertexId, weight?: number, val?: E['val']): E {
return new MapEdge(src, dest, weight, val) as E;
}
}
/**
* The function creates a new instance of a MapEdge with the given source, destination, weight, and value.
* @param {VertexId} src - The source vertex ID of the edge. It represents the starting point of the edge.
* @param {VertexId} dest - The `dest` parameter is the identifier of the destination vertex for the edge being
* created.
* @param {number} [weight] - The `weight` parameter is an optional number that represents the weight of the edge. It
* is used to assign a numerical value to the edge, which can be used in algorithms such as shortest path algorithms.
* If the weight is not provided, it can be set to a default value or left undefined.
* @param [val] - The `val` parameter is an optional value that can be assigned to the edge. It can be of any type,
* depending on the specific implementation of the `MapEdge` class.
* @returns a new instance of the `MapEdge` class, casted as type `E`.
*/
override createEdge(src: VertexId, dest: VertexId, weight?: number, val?: E['val']): E {
return new MapEdge(src, dest, weight, val) as E;
}
}

View file

@ -11,260 +11,260 @@ import type {VertexId} from '../../types';
import {IUNDirectedGraph} from '../../interfaces';
export class UndirectedVertex<T = number> extends AbstractVertex<T> {
/**
* The constructor function initializes a vertex with an optional value.
* @param {VertexId} id - The `id` parameter is of type `VertexId` and represents the identifier of the vertex. It is
* used to uniquely identify the vertex within a graph or network.
* @param {T} [val] - The "val" parameter is an optional parameter of type T. It is used to initialize the value of the
* vertex. If no value is provided, the vertex will be initialized with a default value.
*/
constructor(id: VertexId, val?: T) {
super(id, val);
}
/**
* The constructor function initializes a vertex with an optional value.
* @param {VertexId} id - The `id` parameter is of type `VertexId` and represents the identifier of the vertex. It is
* used to uniquely identify the vertex within a graph or network.
* @param {T} [val] - The "val" parameter is an optional parameter of type T. It is used to initialize the value of the
* vertex. If no value is provided, the vertex will be initialized with a default value.
*/
constructor(id: VertexId, val?: T) {
super(id, val);
}
}
export class UndirectedEdge<T = number> extends AbstractEdge<T> {
/**
* The constructor function creates an instance of a class with two vertex IDs, an optional weight, and an optional
* value.
* @param {VertexId} v1 - The first vertex ID of the edge.
* @param {VertexId} v2 - The parameter `v2` is a `VertexId`, which represents the identifier of the second vertex in a
* graph edge.
* @param {number} [weight] - The weight parameter is an optional number that represents the weight of the edge.
* @param {T} [val] - The "val" parameter is an optional parameter of type T. It is used to store a value associated
* with the edge.
*/
constructor(v1: VertexId, v2: VertexId, weight?: number, val?: T) {
super(weight, val);
this._vertices = [v1, v2];
}
/**
* The constructor function creates an instance of a class with two vertex IDs, an optional weight, and an optional
* value.
* @param {VertexId} v1 - The first vertex ID of the edge.
* @param {VertexId} v2 - The parameter `v2` is a `VertexId`, which represents the identifier of the second vertex in a
* graph edge.
* @param {number} [weight] - The weight parameter is an optional number that represents the weight of the edge.
* @param {T} [val] - The "val" parameter is an optional parameter of type T. It is used to store a value associated
* with the edge.
*/
constructor(v1: VertexId, v2: VertexId, weight?: number, val?: T) {
super(weight, val);
this._vertices = [v1, v2];
}
private _vertices: [VertexId, VertexId];
private _vertices: [VertexId, VertexId];
get vertices() {
return this._vertices;
}
get vertices() {
return this._vertices;
}
set vertices(v: [VertexId, VertexId]) {
this._vertices = v;
}
set vertices(v: [VertexId, VertexId]) {
this._vertices = v;
}
}
export class UndirectedGraph<V extends UndirectedVertex<any> = UndirectedVertex, E extends UndirectedEdge<any> = UndirectedEdge> extends AbstractGraph<V, E> implements IUNDirectedGraph<V, E> {
/**
* The constructor initializes a new Map object to store edges.
*/
constructor() {
super();
this._edges = new Map<V, E[]>();
/**
* The constructor initializes a new Map object to store edges.
*/
constructor() {
super();
this._edges = new Map<V, E[]>();
}
protected _edges: Map<V, E[]>;
get edges(): Map<V, E[]> {
return this._edges;
}
/**
* The function creates a new vertex with an optional value and returns it.
* @param {VertexId} id - The `id` parameter is the unique identifier for the vertex. It is used to distinguish one
* vertex from another in the graph.
* @param [val] - The `val` parameter is an optional value that can be assigned to the vertex. If a value is provided,
* it will be used as the value of the vertex. If no value is provided, the `id` parameter will be used as the value of
* the vertex.
* @returns The method is returning a new instance of the `UndirectedVertex` class, casted as type `V`.
*/
override createVertex(id: VertexId, val?: V['val']): V {
return new UndirectedVertex(id, val ?? id) as V;
}
/**
* The function creates an undirected edge between two vertices with an optional weight and value.
* @param {VertexId} v1 - The parameter `v1` represents the first vertex of the edge.
* @param {VertexId} v2 - The parameter `v2` represents the second vertex of the edge.
* @param {number} [weight] - The `weight` parameter is an optional number that represents the weight of the edge. If
* no weight is provided, it defaults to 1.
* @param [val] - The `val` parameter is an optional value that can be assigned to the edge. It can be of any type and
* is used to store additional information or data associated with the edge.
* @returns a new instance of the `UndirectedEdge` class, which is casted as type `E`.
*/
override createEdge(v1: VertexId, v2: VertexId, weight?: number, val?: E['val']): E {
return new UndirectedEdge(v1, v2, weight ?? 1, val) as E;
}
/**
* The function `getEdge` returns the first edge that connects two vertices, or null if no such edge exists.
* @param {V | null | VertexId} v1 - The parameter `v1` represents a vertex or vertex ID. It can be of type `V` (vertex
* object), `null`, or `VertexId` (a string or number representing the ID of a vertex).
* @param {V | null | VertexId} v2 - The parameter `v2` represents a vertex or vertex ID. It can be of type `V` (vertex
* object), `null`, or `VertexId` (vertex ID).
* @returns an edge (E) or null.
*/
getEdge(v1: V | null | VertexId, v2: V | null | VertexId): E | null {
let edges: E[] | undefined = [];
if (v1 !== null && v2 !== null) {
const vertex1: V | null = this._getVertex(v1);
const vertex2: V | null = this._getVertex(v2);
if (vertex1 && vertex2) {
edges = this._edges.get(vertex1)?.filter(e => e.vertices.includes(vertex2.id));
}
}
protected _edges: Map<V, E[]>;
return edges ? edges[0] || null : null;
}
get edges(): Map<V, E[]> {
return this._edges;
/**
* The function removes an edge between two vertices in a graph and returns the removed edge.
* @param {V | VertexId} v1 - The parameter `v1` represents either a vertex object (`V`) or a vertex ID (`VertexId`).
* @param {V | VertexId} v2 - V | VertexId - This parameter can be either a vertex object (V) or a vertex ID
* (VertexId). It represents the second vertex of the edge that needs to be removed.
* @returns the removed edge (E) if it exists, or null if either of the vertices (V) does not exist.
*/
removeEdgeBetween(v1: V | VertexId, v2: V | VertexId): E | null {
const vertex1: V | null = this._getVertex(v1);
const vertex2: V | null = this._getVertex(v2);
if (!vertex1 || !vertex2) {
return null;
}
/**
* The function creates a new vertex with an optional value and returns it.
* @param {VertexId} id - The `id` parameter is the unique identifier for the vertex. It is used to distinguish one
* vertex from another in the graph.
* @param [val] - The `val` parameter is an optional value that can be assigned to the vertex. If a value is provided,
* it will be used as the value of the vertex. If no value is provided, the `id` parameter will be used as the value of
* the vertex.
* @returns The method is returning a new instance of the `UndirectedVertex` class, casted as type `V`.
*/
override createVertex(id: VertexId, val?: V['val']): V {
return new UndirectedVertex(id, val ?? id) as V;
const v1Edges = this._edges.get(vertex1);
let removed: E | null = null;
if (v1Edges) {
removed = arrayRemove<E>(v1Edges, (e: E) => e.vertices.includes(vertex2.id))[0] || null;
}
/**
* The function creates an undirected edge between two vertices with an optional weight and value.
* @param {VertexId} v1 - The parameter `v1` represents the first vertex of the edge.
* @param {VertexId} v2 - The parameter `v2` represents the second vertex of the edge.
* @param {number} [weight] - The `weight` parameter is an optional number that represents the weight of the edge. If
* no weight is provided, it defaults to 1.
* @param [val] - The `val` parameter is an optional value that can be assigned to the edge. It can be of any type and
* is used to store additional information or data associated with the edge.
* @returns a new instance of the `UndirectedEdge` class, which is casted as type `E`.
*/
override createEdge(v1: VertexId, v2: VertexId, weight?: number, val?: E['val']): E {
return new UndirectedEdge(v1, v2, weight ?? 1, val) as E;
const v2Edges = this._edges.get(vertex2);
if (v2Edges) {
arrayRemove<E>(v2Edges, (e: E) => e.vertices.includes(vertex1.id));
}
return removed;
}
/**
* The function `getEdge` returns the first edge that connects two vertices, or null if no such edge exists.
* @param {V | null | VertexId} v1 - The parameter `v1` represents a vertex or vertex ID. It can be of type `V` (vertex
* object), `null`, or `VertexId` (a string or number representing the ID of a vertex).
* @param {V | null | VertexId} v2 - The parameter `v2` represents a vertex or vertex ID. It can be of type `V` (vertex
* object), `null`, or `VertexId` (vertex ID).
* @returns an edge (E) or null.
*/
getEdge(v1: V | null | VertexId, v2: V | null | VertexId): E | null {
let edges: E[] | undefined = [];
/**
* The removeEdge function removes an edge between two vertices in a graph.
* @param {E} edge - The parameter "edge" is of type E, which represents an edge in a graph.
* @returns The method is returning either the removed edge (of type E) or null if the edge was not found.
*/
removeEdge(edge: E): E | null {
return this.removeEdgeBetween(edge.vertices[0], edge.vertices[1]);
}
if (v1 !== null && v2 !== null) {
const vertex1: V | null = this._getVertex(v1);
const vertex2: V | null = this._getVertex(v2);
/**
* The function `degreeOf` returns the degree of a vertex in a graph, which is the number of edges connected to that
* vertex.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`.
* @returns The function `degreeOf` returns the degree of a vertex in a graph. The degree of a vertex is the number of
* edges connected to that vertex.
*/
degreeOf(vertexOrId: VertexId | V): number {
const vertex = this._getVertex(vertexOrId);
if (vertex) {
return this._edges.get(vertex)?.length || 0;
} else {
return 0;
}
}
if (vertex1 && vertex2) {
edges = this._edges.get(vertex1)?.filter(e => e.vertices.includes(vertex2.id));
}
/**
* The function returns the edges of a given vertex or vertex ID.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`. A `VertexId` is a
* unique identifier for a vertex in a graph, while `V` represents the type of the vertex.
* @returns an array of edges.
*/
edgesOf(vertexOrId: VertexId | V): E[] {
const vertex = this._getVertex(vertexOrId);
if (vertex) {
return this._edges.get(vertex) || [];
} else {
return [];
}
}
/**
* The function "edgeSet" returns an array of unique edges from a set of edges.
* @returns The method `edgeSet()` returns an array of type `E[]`.
*/
edgeSet(): E[] {
const edgeSet: Set<E> = new Set();
this._edges.forEach(edges => {
edges.forEach(edge => {
edgeSet.add(edge);
});
});
return [...edgeSet];
}
/**
* The function "getNeighbors" returns an array of neighboring vertices for a given vertex or vertex ID.
* @param {V | VertexId} vertexOrId - The parameter `vertexOrId` can be either a vertex object (`V`) or a vertex ID
* (`VertexId`).
* @returns an array of vertices (V[]).
*/
getNeighbors(vertexOrId: V | VertexId): V[] {
const neighbors: V[] = [];
const vertex = this._getVertex(vertexOrId);
if (vertex) {
const neighborEdges = this.edgesOf(vertex);
for (const edge of neighborEdges) {
const neighbor = this._getVertex(edge.vertices.filter(e => e !== vertex.id)[0]);
if (neighbor) {
neighbors.push(neighbor);
}
return edges ? edges[0] || null : null;
}
}
return neighbors;
}
/**
* The function removes an edge between two vertices in a graph and returns the removed edge.
* @param {V | VertexId} v1 - The parameter `v1` represents either a vertex object (`V`) or a vertex ID (`VertexId`).
* @param {V | VertexId} v2 - V | VertexId - This parameter can be either a vertex object (V) or a vertex ID
* (VertexId). It represents the second vertex of the edge that needs to be removed.
* @returns the removed edge (E) if it exists, or null if either of the vertices (V) does not exist.
*/
removeEdgeBetween(v1: V | VertexId, v2: V | VertexId): E | null {
const vertex1: V | null = this._getVertex(v1);
const vertex2: V | null = this._getVertex(v2);
if (!vertex1 || !vertex2) {
return null;
}
const v1Edges = this._edges.get(vertex1);
let removed: E | null = null;
if (v1Edges) {
removed = arrayRemove<E>(v1Edges, (e: E) => e.vertices.includes(vertex2.id))[0] || null;
}
const v2Edges = this._edges.get(vertex2);
if (v2Edges) {
arrayRemove<E>(v2Edges, (e: E) => e.vertices.includes(vertex1.id));
}
return removed;
/**
* The function "getEndsOfEdge" returns the vertices at the ends of an edge if the edge exists in the graph, otherwise
* it returns null.
* @param {E} edge - The parameter "edge" is of type E, which represents an edge in a graph.
* @returns The function `getEndsOfEdge` returns an array containing two vertices `[V, V]` if the edge exists in the
* graph. If the edge does not exist, it returns `null`.
*/
getEndsOfEdge(edge: E): [V, V] | null {
if (!this.hasEdge(edge.vertices[0], edge.vertices[1])) {
return null;
}
/**
* The removeEdge function removes an edge between two vertices in a graph.
* @param {E} edge - The parameter "edge" is of type E, which represents an edge in a graph.
* @returns The method is returning either the removed edge (of type E) or null if the edge was not found.
*/
removeEdge(edge: E): E | null {
return this.removeEdgeBetween(edge.vertices[0], edge.vertices[1]);
const v1 = this._getVertex(edge.vertices[0]);
const v2 = this._getVertex(edge.vertices[1]);
if (v1 && v2) {
return [v1, v2];
} else {
return null;
}
}
/**
* The function `degreeOf` returns the degree of a vertex in a graph, which is the number of edges connected to that
* vertex.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`.
* @returns The function `degreeOf` returns the degree of a vertex in a graph. The degree of a vertex is the number of
* edges connected to that vertex.
*/
degreeOf(vertexOrId: VertexId | V): number {
const vertex = this._getVertex(vertexOrId);
if (vertex) {
return this._edges.get(vertex)?.length || 0;
/**
* The function adds an edge to the graph by updating the adjacency list with the vertices of the edge.
* @param {E} edge - The parameter "edge" is of type E, which represents an edge in a graph.
* @returns a boolean value.
*/
protected _addEdgeOnly(edge: E): boolean {
for (const end of edge.vertices) {
const endVertex = this._getVertex(end);
if (endVertex === null) return false;
if (endVertex) {
const edges = this._edges.get(endVertex);
if (edges) {
edges.push(edge);
} else {
return 0;
this._edges.set(endVertex, [edge]);
}
}
}
return true;
}
/**
* The function returns the edges of a given vertex or vertex ID.
* @param {VertexId | V} vertexOrId - The parameter `vertexOrId` can be either a `VertexId` or a `V`. A `VertexId` is a
* unique identifier for a vertex in a graph, while `V` represents the type of the vertex.
* @returns an array of edges.
*/
edgesOf(vertexOrId: VertexId | V): E[] {
const vertex = this._getVertex(vertexOrId);
if (vertex) {
return this._edges.get(vertex) || [];
} else {
return [];
}
}
/**
* The function "edgeSet" returns an array of unique edges from a set of edges.
* @returns The method `edgeSet()` returns an array of type `E[]`.
*/
edgeSet(): E[] {
const edgeSet: Set<E> = new Set();
this._edges.forEach(edges => {
edges.forEach(edge => {
edgeSet.add(edge);
});
});
return [...edgeSet];
}
/**
* The function "getNeighbors" returns an array of neighboring vertices for a given vertex or vertex ID.
* @param {V | VertexId} vertexOrId - The parameter `vertexOrId` can be either a vertex object (`V`) or a vertex ID
* (`VertexId`).
* @returns an array of vertices (V[]).
*/
getNeighbors(vertexOrId: V | VertexId): V[] {
const neighbors: V[] = [];
const vertex = this._getVertex(vertexOrId);
if (vertex) {
const neighborEdges = this.edgesOf(vertex);
for (const edge of neighborEdges) {
const neighbor = this._getVertex(edge.vertices.filter(e => e !== vertex.id)[0]);
if (neighbor) {
neighbors.push(neighbor);
}
}
}
return neighbors;
}
/**
* The function "getEndsOfEdge" returns the vertices at the ends of an edge if the edge exists in the graph, otherwise
* it returns null.
* @param {E} edge - The parameter "edge" is of type E, which represents an edge in a graph.
* @returns The function `getEndsOfEdge` returns an array containing two vertices `[V, V]` if the edge exists in the
* graph. If the edge does not exist, it returns `null`.
*/
getEndsOfEdge(edge: E): [V, V] | null {
if (!this.hasEdge(edge.vertices[0], edge.vertices[1])) {
return null;
}
const v1 = this._getVertex(edge.vertices[0]);
const v2 = this._getVertex(edge.vertices[1]);
if (v1 && v2) {
return [v1, v2];
} else {
return null;
}
}
/**
* The function adds an edge to the graph by updating the adjacency list with the vertices of the edge.
* @param {E} edge - The parameter "edge" is of type E, which represents an edge in a graph.
* @returns a boolean value.
*/
protected _addEdgeOnly(edge: E): boolean {
for (const end of edge.vertices) {
const endVertex = this._getVertex(end);
if (endVertex === null) return false;
if (endVertex) {
const edges = this._edges.get(endVertex);
if (edges) {
edges.push(edge);
} else {
this._edges.set(endVertex, [edge]);
}
}
}
return true;
}
/**
* The function sets the edges of a graph.
* @param v - A map where the keys are of type V and the values are arrays of type E.
*/
protected _setEdges(v: Map<V, E[]>) {
this._edges = v;
}
/**
* The function sets the edges of a graph.
* @param v - A map where the keys are of type V and the values are arrays of type E.
*/
protected _setEdges(v: Map<V, E[]>) {
this._edges = v;
}
}

View file

@ -6,62 +6,62 @@
* @license MIT License
*/
export class CoordinateMap<V> extends Map<any, V> {
constructor(joint?: string) {
super();
if (joint !== undefined) this._joint = joint;
}
constructor(joint?: string) {
super();
if (joint !== undefined) this._joint = joint;
}
protected _joint: string = '_';
protected _joint: string = '_';
get joint(): string {
return this._joint;
}
get joint(): string {
return this._joint;
}
/**
* The "has" function overrides the base class's "has" function and checks if a key exists in the map by joining the
* key array with a specified delimiter.
* @param {number[]} key - The parameter "key" is an array of numbers.
* @returns The `has` method is being overridden to return the result of calling the `has` method of the superclass
* (`super.has`) with the `key` array joined together using the `_joint` property.
*/
override has(key: number[]) {
return super.has(key.join(this._joint));
}
/**
* The "has" function overrides the base class's "has" function and checks if a key exists in the map by joining the
* key array with a specified delimiter.
* @param {number[]} key - The parameter "key" is an array of numbers.
* @returns The `has` method is being overridden to return the result of calling the `has` method of the superclass
* (`super.has`) with the `key` array joined together using the `_joint` property.
*/
override has(key: number[]) {
return super.has(key.join(this._joint));
}
/**
* The function overrides the set method of a Map object to convert the key from an array to a string using a specified
* delimiter before calling the original set method.
* @param {number[]} key - The key parameter is an array of numbers.
* @param {V} value - The value parameter is the value that you want to associate with the specified key.
* @returns The `set` method is returning the result of calling the `set` method of the superclass
* (`super.set(key.join(this._joint), value)`).
*/
override set(key: number[], value: V) {
return super.set(key.join(this._joint), value);
}
/**
* The function overrides the set method of a Map object to convert the key from an array to a string using a specified
* delimiter before calling the original set method.
* @param {number[]} key - The key parameter is an array of numbers.
* @param {V} value - The value parameter is the value that you want to associate with the specified key.
* @returns The `set` method is returning the result of calling the `set` method of the superclass
* (`super.set(key.join(this._joint), value)`).
*/
override set(key: number[], value: V) {
return super.set(key.join(this._joint), value);
}
/**
* The function overrides the get method to join the key array with a specified joint and then calls the super get
* method.
* @param {number[]} key - An array of numbers
* @returns The code is returning the value associated with the specified key in the map.
*/
override get(key: number[]) {
return super.get(key.join(this._joint));
}
/**
* The function overrides the get method to join the key array with a specified joint and then calls the super get
* method.
* @param {number[]} key - An array of numbers
* @returns The code is returning the value associated with the specified key in the map.
*/
override get(key: number[]) {
return super.get(key.join(this._joint));
}
/**
* The function overrides the delete method and joins the key array using a specified joint character before calling
* the super delete method.
* @param {number[]} key - An array of numbers that represents the key to be deleted.
* @returns The `delete` method is returning the result of calling the `delete` method on the superclass, with the
* `key` array joined together using the `_joint` property.
*/
override delete(key: number[]) {
return super.delete(key.join(this._joint));
}
/**
* The function overrides the delete method and joins the key array using a specified joint character before calling
* the super delete method.
* @param {number[]} key - An array of numbers that represents the key to be deleted.
* @returns The `delete` method is returning the result of calling the `delete` method on the superclass, with the
* `key` array joined together using the `_joint` property.
*/
override delete(key: number[]) {
return super.delete(key.join(this._joint));
}
protected _setJoint(v: string) {
this._joint = v;
}
}
protected _setJoint(v: string) {
this._joint = v;
}
}

View file

@ -6,51 +6,51 @@
* @license MIT License
*/
export class CoordinateSet extends Set<any> {
constructor(joint?: string) {
super();
if (joint !== undefined) this._joint = joint;
}
constructor(joint?: string) {
super();
if (joint !== undefined) this._joint = joint;
}
protected _joint: string = '_';
protected _joint: string = '_';
get joint(): string {
return this._joint;
}
get joint(): string {
return this._joint;
}
/**
* The "has" function overrides the "has" method of the superclass and checks if a value exists in an array after
* joining its elements with a specified separator.
* @param {number[]} value - The parameter "value" is an array of numbers.
* @returns The overridden `has` method is returning the result of calling the `has` method of the superclass, passing
* in the joined value as an argument.
*/
override has(value: number[]) {
return super.has(value.join(this._joint));
}
/**
* The "has" function overrides the "has" method of the superclass and checks if a value exists in an array after
* joining its elements with a specified separator.
* @param {number[]} value - The parameter "value" is an array of numbers.
* @returns The overridden `has` method is returning the result of calling the `has` method of the superclass, passing
* in the joined value as an argument.
*/
override has(value: number[]) {
return super.has(value.join(this._joint));
}
/**
* The "add" function overrides the parent class's "add" function by joining the elements of the input array with a
* specified delimiter before calling the parent class's "add" function.
* @param {number[]} value - An array of numbers
* @returns The overridden `add` method is returning the result of calling the `add` method of the superclass
* (`super.add`) with the joined string representation of the `value` array (`value.join(this._joint)`).
*/
override add(value: number[]) {
return super.add(value.join(this._joint));
}
/**
* The "add" function overrides the parent class's "add" function by joining the elements of the input array with a
* specified delimiter before calling the parent class's "add" function.
* @param {number[]} value - An array of numbers
* @returns The overridden `add` method is returning the result of calling the `add` method of the superclass
* (`super.add`) with the joined string representation of the `value` array (`value.join(this._joint)`).
*/
override add(value: number[]) {
return super.add(value.join(this._joint));
}
/**
* The function overrides the delete method and deletes an element from a Set by joining the elements of the input
* array with a specified joint and then calling the delete method of the parent class.
* @param {number[]} value - An array of numbers
* @returns The `delete` method is returning the result of calling the `delete` method of the superclass, with the
* `value` array joined together using the `_joint` property.
*/
override delete(value: number[]) {
return super.delete(value.join(this._joint));
}
/**
* The function overrides the delete method and deletes an element from a Set by joining the elements of the input
* array with a specified joint and then calling the delete method of the parent class.
* @param {number[]} value - An array of numbers
* @returns The `delete` method is returning the result of calling the `delete` method of the superclass, with the
* `value` array joined together using the `_joint` property.
*/
override delete(value: number[]) {
return super.delete(value.join(this._joint));
}
protected _setJoint(v: string) {
this._joint = v;
}
}
protected _setJoint(v: string) {
this._joint = v;
}
}

View file

@ -10,191 +10,202 @@ import type {HeapOptions} from '../../types';
export class HeapItem<T = number> {
/**
* The constructor function initializes an instance of a class with a priority and a value.
* @param {number} priority - The `priority` parameter is a number that represents the priority of the value. It is
* optional and has a default value of `NaN`.
* @param {T | null} [val=null] - The `val` parameter is of type `T | null`, which means it can accept a value of type
* `T` or `null`.
*/
constructor(priority: number = NaN, val: T | null = null) {
this._val = val;
this._priority = priority;
}
/**
* The constructor function initializes an instance of a class with a priority and a value.
* @param {number} priority - The `priority` parameter is a number that represents the priority of the value. It is
* optional and has a default value of `NaN`.
* @param {T | null} [val=null] - The `val` parameter is of type `T | null`, which means it can accept a value of type
* `T` or `null`.
*/
constructor(priority: number = Number.MAX_SAFE_INTEGER, val: T | null = null) {
this._val = val;
this._priority = priority;
}
private _priority: number;
private _priority: number;
get priority(): number {
return this._priority;
}
get priority(): number {
return this._priority;
}
set priority(value: number) {
this._priority = value;
}
set priority(value: number) {
this._priority = value;
}
private _val: T | null;
private _val: T | null;
get val(): T | null {
return this._val;
}
get val(): T | null {
return this._val;
}
set val(value: T | null) {
this._val = value;
}
set val(value: T | null) {
this._val = value;
}
}
export abstract class Heap<T = number> {
/**
* The function is a constructor for a class that initializes a priority callback function based on the
* options provided.
* @param [options] - An optional object that contains configuration options for the Heap.
*/
protected constructor(options?: HeapOptions<T>) {
if (options) {
const {priorityExtractor} = options;
if (priorityExtractor !== undefined && typeof priorityExtractor !== 'function') {
throw new Error('.constructor expects a valid priority function');
}
this._priorityExtractor = priorityExtractor || ((el) => +el);
} else {
this._priorityExtractor = (el) => +el;
}
/**
* The function is a constructor for a class that initializes a priority callback function based on the
* options provided.
* @param [options] - An optional object that contains configuration options for the Heap.
*/
protected constructor(options?: HeapOptions<T>) {
if (options) {
const {priorityExtractor} = options;
if (priorityExtractor !== undefined && typeof priorityExtractor !== 'function') {
throw new Error('.constructor expects a valid priority function');
}
this._priorityExtractor = priorityExtractor || ((el) => +el);
} else {
this._priorityExtractor = (el) => +el;
}
}
protected abstract _pq: PriorityQueue<HeapItem<T>>;
get pq() {
return this._pq;
}
protected _priorityExtractor: (val: T) => number;
get priorityExtractor() {
return this._priorityExtractor;
}
/**
* The function returns the size of a priority queue.
* @returns The size of the priority queue.
*/
get size(): number {
return this._pq.size;
}
/**
* The function checks if a priority queue is empty.
* @returns {boolean} A boolean value indicating whether the size of the priority queue is less than 1.
*/
isEmpty(): boolean {
return this._pq.size < 1;
}
peek(isItem?: undefined): T | undefined;
peek(isItem: false): T | undefined;
peek(isItem: true): HeapItem<T> | null;
/**
* The `peek` function returns the top item in the priority queue without removing it.
* @returns The `peek()` method is returning either a `HeapItem<T>` object or `null`.Returns an val with the highest priority in the queue
*/
peek(isItem?: boolean): HeapItem<T> | null | T | undefined {
isItem = isItem ?? false;
const peeked = this._pq.peek();
return isItem ? peeked : peeked?.val;
}
peekLast(isItem?: undefined): T | undefined;
peekLast(isItem: false): T | undefined;
peekLast(isItem: true): HeapItem<T> | null;
/**
* The `peekLast` function returns the last item in the heap.
* @returns The method `peekLast()` returns either a `HeapItem<T>` object or `null`.Returns an val with the lowest priority in the queue
*/
peekLast(isItem?: boolean): HeapItem<T> | null | T | undefined {
isItem = isItem ?? false;
const leafItem = this._pq.leaf();
return isItem ? leafItem : leafItem?.val;
}
/**
* The `add` function adds an val to a priority queue with an optional priority value.
* @param {T} val - The `val` parameter represents the value that you want to add to the heap. It can be of any
* type.
* @param {number} [priority] - The `priority` parameter is an optional number that represents the priority of the
* val being added to the heap. If the `val` parameter is a number, then the `priority` parameter is set to
* the value of `val`. If the `val` parameter is not a number, then the
* @returns The `add` method returns the instance of the `Heap` class.
* @throws {Error} if priority is not a valid number
*/
add(priority: number, val?: T,): Heap<T> {
val = (val === undefined) ? priority as unknown as T : val;
this._pq.add(new HeapItem<T>(priority, val));
return this;
}
poll(isItem?: undefined): T | undefined;
poll(isItem: false): T | undefined;
poll(isItem: true): HeapItem<T> | null;
/**
* The `poll` function returns the top item from a priority queue or null if the queue is empty.Removes and returns an val with the highest priority in the queue
* @returns either a HeapItem<T> object or null.
*/
poll(isItem?: boolean): HeapItem<T> | null | T | undefined {
isItem = isItem ?? false;
const top = this._pq.poll();
if (!top) {
return null;
}
protected abstract _pq: PriorityQueue<HeapItem<T>>;
return isItem ? top : top.val;
}
get pq() {
return this._pq;
/**
* The function checks if a given node or value exists in the priority queue.
* @param {T | HeapItem<T>} node - The parameter `node` can be of type `T` or `HeapItem<T>`.
* @returns a boolean value.
*/
has(node: T | HeapItem<T>): boolean {
if (node instanceof HeapItem) {
return this.pq.getNodes().includes(node);
} else {
return this.pq.getNodes().findIndex(item => {
return item.val === node;
}) !== -1;
}
}
protected _priorityExtractor: (val: T) => number;
get priorityExtractor() {
return this._priorityExtractor;
}
toArray(isItem?: undefined): (T | undefined)[];
toArray(isItem: false): (T | undefined)[];
toArray(isItem: true): (HeapItem<T> | null)[];
/**
* The function returns the size of a priority queue.
* @returns The size of the priority queue.
*/
get size(): number {
return this._pq.size;
}
/**
* The `toArray` function returns an array of `HeapItem<T>` objects.
* @returns An array of HeapItem<T> objects.Returns a sorted list of vals
*/
toArray(isItem?: boolean): (HeapItem<T> | null | T | undefined)[] {
isItem = isItem ?? false;
const itemArray = this._pq.toArray();
/**
* The function checks if a priority queue is empty.
* @returns {boolean} A boolean value indicating whether the size of the priority queue is less than 1.
*/
isEmpty(): boolean {
return this._pq.size < 1;
}
return isItem ? itemArray : itemArray.map(item => item.val);
}
peek(isItem?: undefined): T | undefined;
peek(isItem: false): T | undefined;
peek(isItem: true): HeapItem<T> | null;
/**
* The `peek` function returns the top item in the priority queue without removing it.
* @returns The `peek()` method is returning either a `HeapItem<T>` object or `null`.Returns an val with the highest priority in the queue
*/
peek(isItem?: boolean): HeapItem<T> | null | T | undefined {
isItem = isItem ?? false;
const peeked = this._pq.peek();
return isItem ? peeked : peeked?.val;
}
sort(isItem?: undefined): (T | undefined)[];
sort(isItem: false): (T | undefined)[];
sort(isItem: true): (HeapItem<T> | null)[];
peekLast(isItem?: undefined): T | undefined;
peekLast(isItem: false): T | undefined;
peekLast(isItem: true): HeapItem<T> | null;
/**
* The `peekLast` function returns the last item in the heap.
* @returns The method `peekLast()` returns either a `HeapItem<T>` object or `null`.Returns an val with the lowest priority in the queue
*/
peekLast(isItem?: boolean): HeapItem<T> | null | T | undefined {
isItem = isItem ?? false;
const leafItem = this._pq.leaf();
return isItem ? leafItem : leafItem?.val;
}
/**
* The function sorts the elements in the priority queue and returns either the sorted items or their values depending
* on the value of the isItem parameter.
* @param {boolean} [isItem] - The `isItem` parameter is a boolean flag that indicates whether the sorted result should
* be an array of `HeapItem<T>` objects or an array of the values (`T`) of those objects. If `isItem` is `true`, the
* sorted result will be an array of `HeapItem
* @returns an array of either `HeapItem<T>`, `null`, `T`, or `undefined` values.
*/
sort(isItem?: boolean): (HeapItem<T> | null | T | undefined)[] {
isItem = isItem ?? false;
const sorted = this._pq.sort();
/**
* The `add` function adds an val to a priority queue with an optional priority value.
* @param {T} val - The `val` parameter represents the value that you want to add to the heap. It can be of any
* type.
* @param {number} [priority] - The `priority` parameter is an optional number that represents the priority of the
* val being added to the heap. If the `val` parameter is a number, then the `priority` parameter is set to
* the value of `val`. If the `val` parameter is not a number, then the
* @returns The `add` method returns the instance of the `Heap` class.
* @throws {Error} if priority is not a valid number
*/
add(priority: number, val?: T,): Heap<T> {
val = (val === undefined) ? priority as T : val;
this._pq.add(new HeapItem<T>(priority, val));
return this;
}
return isItem ? sorted : sorted.map(item => item.val);
}
poll(isItem?: undefined): T | undefined;
poll(isItem: false): T | undefined;
poll(isItem: true): HeapItem<T> | null;
/**
* The `poll` function returns the top item from a priority queue or null if the queue is empty.Removes and returns an val with the highest priority in the queue
* @returns either a HeapItem<T> object or null.
*/
poll(isItem?: boolean): HeapItem<T> | null | T | undefined {
isItem = isItem ?? false;
const top = this._pq.poll();
if (!top) {
return null;
}
return isItem ? top : top.val;
}
/**
* The function checks if a given node or value exists in the priority queue.
* @param {T | HeapItem<T>} node - The parameter `node` can be of type `T` or `HeapItem<T>`.
* @returns a boolean value.
*/
has(node: T | HeapItem<T>): boolean {
if (node instanceof HeapItem) {
return this.pq.getNodes().includes(node);
} else {
return this.pq.getNodes().findIndex(item => {
return item.val === node;
}) !== -1;
}
}
toArray(isItem?: undefined): (T | undefined)[];
toArray(isItem: false): (T | undefined)[];
toArray(isItem: true): (HeapItem<T> | null)[];
/**
* The `toArray` function returns an array of `HeapItem<T>` objects.
* @returns An array of HeapItem<T> objects.Returns a sorted list of vals
*/
toArray(isItem?: boolean): (HeapItem<T> | null | T | undefined)[] {
isItem = isItem ?? false;
const itemArray = this._pq.toArray();
return isItem ? itemArray : itemArray.map(item => item.val);
}
sort(isItem?: undefined): (T | undefined)[];
sort(isItem: false): (T | undefined)[];
sort(isItem: true): (HeapItem<T> | null)[];
/**
* The function sorts the elements in the priority queue and returns either the sorted items or their values depending
* on the value of the isItem parameter.
* @param {boolean} [isItem] - The `isItem` parameter is a boolean flag that indicates whether the sorted result should
* be an array of `HeapItem<T>` objects or an array of the values (`T`) of those objects. If `isItem` is `true`, the
* sorted result will be an array of `HeapItem
* @returns an array of either `HeapItem<T>`, `null`, `T`, or `undefined` values.
*/
sort(isItem?: boolean): (HeapItem<T> | null | T | undefined)[] {
isItem = isItem ?? false;
const sorted = this._pq.sort();
return isItem ? sorted : sorted.map(item => item.val);
}
/**
* The clear function clears the priority queue.
*/
clear(): void {
this._pq.clear();
}
/**
* The clear function clears the priority queue.
*/
clear(): void {
this._pq.clear();
}
}

View file

@ -15,17 +15,17 @@ import type {HeapOptions} from '../../types';
* @extends Heap
*/
export class MaxHeap<T = number> extends Heap<T> {
protected _pq: PriorityQueue<HeapItem<T>>;
protected _pq: PriorityQueue<HeapItem<T>>;
/**
* The constructor initializes a PriorityQueue with a custom comparator function.
* @param [options] - The `options` parameter is an optional object that can be passed to the constructor. It is of
* type `HeapOptions<T>`, which is a generic type that represents the options for the heap.
*/
constructor(options?: HeapOptions<T>) {
super(options);
this._pq = new PriorityQueue<HeapItem<T>>({
comparator: (a, b) => b.priority - a.priority
});
}
/**
* The constructor initializes a PriorityQueue with a custom comparator function.
* @param [options] - The `options` parameter is an optional object that can be passed to the constructor. It is of
* type `HeapOptions<T>`, which is a generic type that represents the options for the heap.
*/
constructor(options?: HeapOptions<T>) {
super(options);
this._pq = new PriorityQueue<HeapItem<T>>({
comparator: (a, b) => b.priority - a.priority
});
}
}

View file

@ -15,20 +15,20 @@ import type {HeapOptions} from '../../types';
* @extends Heap
*/
export class MinHeap<T = number> extends Heap<T> {
protected _pq: PriorityQueue<HeapItem<T>>;
protected _pq: PriorityQueue<HeapItem<T>>;
/**
* The constructor initializes a PriorityQueue with a comparator function that compares the priority of two HeapItem
* objects.
* @param [options] - The `options` parameter is an optional object that can be passed to the constructor. It is of
* type `HeapOptions<T>`, which is a generic type that represents the options for the heap.
*/
constructor(options?: HeapOptions<T>) {
super(options);
this._pq = new PriorityQueue<HeapItem<T>>({
comparator: (a, b) => a.priority - b.priority
});
}
/**
* The constructor initializes a PriorityQueue with a comparator function that compares the priority of two HeapItem
* objects.
* @param [options] - The `options` parameter is an optional object that can be passed to the constructor. It is of
* type `HeapOptions<T>`, which is a generic type that represents the options for the heap.
*/
constructor(options?: HeapOptions<T>) {
super(options);
this._pq = new PriorityQueue<HeapItem<T>>({
comparator: (a, b) => a.priority - b.priority
});
}
}

File diff suppressed because it is too large Load diff

View file

@ -1,490 +1,490 @@
/**
* data-structure-typed
*
* @author Tyler Zeng
* @copyright Copyright (c) 2022 Tyler Zeng <zrwusa@gmail.com>
* @license MIT License
*/
export class SinglyLinkedListNode<T = number> {
/**
* The constructor function initializes an instance of a class with a given value and sets the next property to null.
* @param {T} val - The "val" parameter is of type T, which means it can be any data type. It represents the value that
* will be stored in the node of a linked list.
*/
constructor(val: T) {
this._val = val;
this._next = null;
}
private _val: T;
get val(): T {
return this._val;
}
set val(value: T) {
this._val = value;
}
private _next: SinglyLinkedListNode<T> | null;
get next(): SinglyLinkedListNode<T> | null {
return this._next;
}
set next(value: SinglyLinkedListNode<T> | null) {
this._next = value;
}
}
export class SinglyLinkedList<T = number> {
/**
* The constructor initializes the linked list with an empty head, tail, and length.
*/
constructor() {
this._head = null;
this._tail = null;
this._length = 0;
}
private _head: SinglyLinkedListNode<T> | null;
get head(): SinglyLinkedListNode<T> | null {
return this._head;
}
set head(value: SinglyLinkedListNode<T> | null) {
this._head = value;
}
private _tail: SinglyLinkedListNode<T> | null;
get tail(): SinglyLinkedListNode<T> | null {
return this._tail;
}
set tail(value: SinglyLinkedListNode<T> | null) {
this._tail = value;
}
private _length: number;
get length(): number {
return this._length;
}
/**
* The `fromArray` function creates a new SinglyLinkedList instance and populates it with the elements from the given
* array.
* @param {T[]} data - The `data` parameter is an array of elements of type `T`.
* @returns The `fromArray` function returns a `SinglyLinkedList` object.
*/
static fromArray<T>(data: T[]) {
const singlyLinkedList = new SinglyLinkedList<T>();
for (const item of data) {
singlyLinkedList.push(item);
}
return singlyLinkedList;
}
getLength(): number {
return this._length;
}
/**
* The `push` function adds a new node with the given data to the end of a singly linked list.
* @param {T} data - The "data" parameter represents the value that you want to add to the linked list. It can be of
* any type (T) as specified in the generic type declaration of the class or function.
*/
push(data: T): void {
const newNode = new SinglyLinkedListNode(data);
if (!this.head) {
this.head = newNode;
this.tail = newNode;
} else {
this.tail!.next = newNode;
this.tail = newNode;
}
this._length++;
}
/**
* The `pop()` function removes and returns the value of the last element in a linked list, updating the head and tail
* pointers accordingly.
* @returns The method `pop()` returns the value of the node that is being removed from the end of the linked list. If
* the linked list is empty, it returns `null`.
*/
pop(): T | null {
if (!this.head) return null;
if (this.head === this.tail) {
const val = this.head.val;
this.head = null;
this.tail = null;
this._length--;
return val;
}
let current = this.head;
while (current.next !== this.tail) {
current = current.next!;
}
const val = this.tail!.val;
current.next = null;
this.tail = current;
this._length--;
return val;
}
/**
* The `shift()` function removes and returns the value of the first node in a linked list.
* @returns The value of the node that is being removed from the beginning of the linked list.
*/
shift(): T | null {
if (!this.head) return null;
const removedNode = this.head;
this.head = this.head.next;
this._length--;
return removedNode.val;
}
/**
* The unshift function adds a new node with the given value to the beginning of a singly linked list.
* @param {T} val - The parameter "val" represents the value of the new node that will be added to the beginning of the
* linked list.
*/
unshift(val: T): void {
const newNode = new SinglyLinkedListNode(val);
if (!this.head) {
this.head = newNode;
this.tail = newNode;
} else {
newNode.next = this.head;
this.head = newNode;
}
this._length++;
}
/**
* The function `getAt` returns the value at a specified index in a linked list, or null if the index is out of range.
* @param {number} index - The index parameter is a number that represents the position of the element we want to
* retrieve from the list.
* @returns The method `getAt(index: number): T | null` returns the value at the specified index in the linked list, or
* `null` if the index is out of bounds.
*/
getAt(index: number): T | null {
if (index < 0 || index >= this.length) return null;
let current = this.head;
for (let i = 0; i < index; i++) {
current = current!.next;
}
return current!.val;
}
/**
* The function `getNodeAt` returns the node at a given index in a singly linked list.
* @param {number} index - The `index` parameter is a number that represents the position of the node we want to
* retrieve from the linked list. It indicates the zero-based index of the node we want to access.
* @returns The method `getNodeAt(index: number)` returns a `SinglyLinkedListNode<T>` object if the node at the
* specified index exists, or `null` if the index is out of bounds.
*/
getNodeAt(index: number): SinglyLinkedListNode<T> | null {
let current = this.head;
for (let i = 0; i < index; i++) {
current = current!.next;
}
return current;
}
/**
* The `deleteAt` function removes an element at a specified index from a linked list and returns the removed element.
* @param {number} index - The index parameter represents the position of the element that needs to be deleted in the
* data structure. It is of type number.
* @returns The method `deleteAt` returns the value of the node that was deleted, or `null` if the index is out of
* bounds.
*/
deleteAt(index: number): T | null {
if (index < 0 || index >= this.length) return null;
if (index === 0) return this.shift();
if (index === this.length - 1) return this.pop();
const prevNode = this.getNodeAt(index - 1);
const removedNode = prevNode!.next;
prevNode!.next = removedNode!.next;
this._length--;
return removedNode!.val;
}
delete(valueOrNode: T): boolean;
delete(valueOrNode: SinglyLinkedListNode<T>): boolean;
/**
* The delete function removes a node with a specific value from a singly linked list.
* @param {T | SinglyLinkedListNode<T>} valueOrNode - The `valueOrNode` parameter can accept either a value of type `T`
* or a `SinglyLinkedListNode<T>` object.
* @returns The `delete` method returns a boolean value. It returns `true` if the value or node is found and
* successfully deleted from the linked list, and `false` if the value or node is not found in the linked list.
*/
delete(valueOrNode: T | SinglyLinkedListNode<T>): boolean {
let value: T;
if (valueOrNode instanceof SinglyLinkedListNode) {
value = valueOrNode.val;
} else {
value = valueOrNode;
}
let current = this.head, prev = null;
while (current) {
if (current.val === value) {
if (prev === null) {
this.head = current.next;
if (current === this.tail) {
this.tail = null;
}
} else {
prev.next = current.next;
if (current === this.tail) {
this.tail = prev;
}
}
this._length--;
return true;
}
prev = current;
current = current.next;
}
return false;
}
/**
* The `insertAt` function inserts a value at a specified index in a singly linked list.
* @param {number} index - The index parameter represents the position at which the new value should be inserted in the
* linked list. It is of type number.
* @param {T} val - The `val` parameter represents the value that you want to insert into the linked list at the
* specified index.
* @returns The `insert` method returns a boolean value. It returns `true` if the insertion is successful, and `false`
* if the index is out of bounds.
*/
insertAt(index: number, val: T): boolean {
if (index < 0 || index > this.length) return false;
if (index === 0) {
this.unshift(val);
return true;
}
if (index === this.length) {
this.push(val);
return true;
}
const newNode = new SinglyLinkedListNode(val);
const prevNode = this.getNodeAt(index - 1);
newNode.next = prevNode!.next;
prevNode!.next = newNode;
this._length++;
return true;
}
/**
* The function checks if the length of a data structure is equal to zero and returns a boolean value indicating
* whether it is empty or not.
* @returns A boolean value indicating whether the length of the object is equal to 0.
*/
isEmpty(): boolean {
return this.length === 0;
}
/**
* The `clear` function resets the linked list by setting the head, tail, and length to null and 0 respectively.
*/
clear(): void {
this._head = null;
this._tail = null;
this._length = 0;
}
/**
* The `toArray` function converts a linked list into an array.
* @returns The `toArray()` method is returning an array of type `T[]`.
*/
toArray(): T[] {
const array: T[] = [];
let current = this.head;
while (current) {
array.push(current.val);
current = current.next;
}
return array;
}
/**
* The `reverse` function reverses the order of the nodes in a singly linked list.
* @returns The reverse() method does not return anything. It has a return type of void.
*/
reverse(): void {
if (!this.head || this.head === this.tail) return;
let prev: SinglyLinkedListNode<T> | null = null;
let current: SinglyLinkedListNode<T> | null = this.head;
let next: SinglyLinkedListNode<T> | null = null;
while (current) {
next = current.next;
current.next = prev;
prev = current;
current = next;
}
[this.head, this.tail] = [this.tail!, this.head!];
}
/**
* The `find` function iterates through a linked list and returns the first element that satisfies a given condition.
* @param callback - A function that takes a value of type T as its parameter and returns a boolean value. This
* function is used to determine whether a particular value in the linked list satisfies a certain condition.
* @returns The method `find` returns the first element in the linked list that satisfies the condition specified by
* the callback function. If no element satisfies the condition, it returns `null`.
*/
find(callback: (val: T) => boolean): T | null {
let current = this.head;
while (current) {
if (callback(current.val)) {
return current.val;
}
current = current.next;
}
return null;
}
/**
* The `indexOf` function returns the index of the first occurrence of a given value in a linked list.
* @param {T} value - The value parameter is the value that you want to find the index of in the linked list.
* @returns The method is returning the index of the first occurrence of the specified value in the linked list. If the
* value is not found, it returns -1.
*/
indexOf(value: T): number {
let index = 0;
let current = this.head;
while (current) {
if (current.val === value) {
return index;
}
index++;
current = current.next;
}
return -1;
}
/**
* The function finds a node in a singly linked list by its value and returns the node if found, otherwise returns
* null.
* @param {T} value - The value parameter is the value that we want to search for in the linked list.
* @returns a `SinglyLinkedListNode<T>` if a node with the specified value is found in the linked list. If no node with
* the specified value is found, the function returns `null`.
*/
findNode(value: T): SinglyLinkedListNode<T> | null {
let current = this.head;
while (current) {
if (current.val === value) {
return current;
}
current = current.next;
}
return null;
}
insertBefore(existingValue: T, newValue: T): boolean
insertBefore(existingValue: SinglyLinkedListNode<T>, newValue: T): boolean
/**
* The `insertBefore` function inserts a new value before an existing value in a singly linked list.
* @param {T | SinglyLinkedListNode<T>} existingValueOrNode - The existing value or node that you want to insert the
* new value before. It can be either the value itself or a node containing the value in the linked list.
* @param {T} newValue - The `newValue` parameter represents the value that you want to insert into the linked list.
* @returns The method `insertBefore` returns a boolean value. It returns `true` if the new value was successfully
* inserted before the existing value, and `false` otherwise.
*/
insertBefore(existingValueOrNode: T | SinglyLinkedListNode<T>, newValue: T): boolean {
if (!this.head) return false;
let existingValue: T;
if (existingValueOrNode instanceof SinglyLinkedListNode) {
existingValue = existingValueOrNode.val;
} else {
existingValue = existingValueOrNode;
}
if (this.head.val === existingValue) {
this.unshift(newValue);
return true;
}
let current = this.head;
while (current.next) {
if (current.next.val === existingValue) {
const newNode = new SinglyLinkedListNode(newValue);
newNode.next = current.next;
current.next = newNode;
this._length++;
return true;
}
current = current.next;
}
return false;
}
insertAfter(existingValueOrNode: T, newValue: T): boolean
insertAfter(existingValueOrNode: SinglyLinkedListNode<T>, newValue: T): boolean
/**
* The `insertAfter` function inserts a new node with a given value after an existing node in a singly linked list.
* @param {T | SinglyLinkedListNode<T>} existingValueOrNode - The existing value or node in the linked list after which
* the new value will be inserted. It can be either the value of the existing node or the existing node itself.
* @param {T} newValue - The value that you want to insert into the linked list after the existing value or node.
* @returns The method returns a boolean value. It returns true if the new value was successfully inserted after the
* existing value or node, and false if the existing value or node was not found in the linked list.
*/
insertAfter(existingValueOrNode: T | SinglyLinkedListNode<T>, newValue: T): boolean {
let existingNode: T | SinglyLinkedListNode<T> | null;
if (existingValueOrNode instanceof SinglyLinkedListNode) {
existingNode = existingValueOrNode;
} else {
existingNode = this.findNode(existingValueOrNode);
}
if (existingNode) {
const newNode = new SinglyLinkedListNode(newValue);
newNode.next = existingNode.next;
existingNode.next = newNode;
if (existingNode === this.tail) {
this.tail = newNode;
}
this._length++;
return true;
}
return false;
}
/**
* The function counts the number of occurrences of a given value in a linked list.
* @param {T} value - The value parameter is the value that you want to count the occurrences of in the linked list.
* @returns The count of occurrences of the given value in the linked list.
*/
countOccurrences(value: T): number {
let count = 0;
let current = this.head;
while (current) {
if (current.val === value) {
count++;
}
current = current.next;
}
return count;
}
}
/**
* data-structure-typed
*
* @author Tyler Zeng
* @copyright Copyright (c) 2022 Tyler Zeng <zrwusa@gmail.com>
* @license MIT License
*/
export class SinglyLinkedListNode<T = number> {
/**
* The constructor function initializes an instance of a class with a given value and sets the next property to null.
* @param {T} val - The "val" parameter is of type T, which means it can be any data type. It represents the value that
* will be stored in the node of a linked list.
*/
constructor(val: T) {
this._val = val;
this._next = null;
}
private _val: T;
get val(): T {
return this._val;
}
set val(value: T) {
this._val = value;
}
private _next: SinglyLinkedListNode<T> | null;
get next(): SinglyLinkedListNode<T> | null {
return this._next;
}
set next(value: SinglyLinkedListNode<T> | null) {
this._next = value;
}
}
export class SinglyLinkedList<T = number> {
/**
* The constructor initializes the linked list with an empty head, tail, and length.
*/
constructor() {
this._head = null;
this._tail = null;
this._length = 0;
}
private _head: SinglyLinkedListNode<T> | null;
get head(): SinglyLinkedListNode<T> | null {
return this._head;
}
set head(value: SinglyLinkedListNode<T> | null) {
this._head = value;
}
private _tail: SinglyLinkedListNode<T> | null;
get tail(): SinglyLinkedListNode<T> | null {
return this._tail;
}
set tail(value: SinglyLinkedListNode<T> | null) {
this._tail = value;
}
private _length: number;
get length(): number {
return this._length;
}
/**
* The `fromArray` function creates a new SinglyLinkedList instance and populates it with the elements from the given
* array.
* @param {T[]} data - The `data` parameter is an array of elements of type `T`.
* @returns The `fromArray` function returns a `SinglyLinkedList` object.
*/
static fromArray<T>(data: T[]) {
const singlyLinkedList = new SinglyLinkedList<T>();
for (const item of data) {
singlyLinkedList.push(item);
}
return singlyLinkedList;
}
getLength(): number {
return this._length;
}
/**
* The `push` function adds a new node with the given data to the end of a singly linked list.
* @param {T} data - The "data" parameter represents the value that you want to add to the linked list. It can be of
* any type (T) as specified in the generic type declaration of the class or function.
*/
push(data: T): void {
const newNode = new SinglyLinkedListNode(data);
if (!this.head) {
this.head = newNode;
this.tail = newNode;
} else {
this.tail!.next = newNode;
this.tail = newNode;
}
this._length++;
}
/**
* The `pop()` function removes and returns the value of the last element in a linked list, updating the head and tail
* pointers accordingly.
* @returns The method `pop()` returns the value of the node that is being removed from the end of the linked list. If
* the linked list is empty, it returns `null`.
*/
pop(): T | null {
if (!this.head) return null;
if (this.head === this.tail) {
const val = this.head.val;
this.head = null;
this.tail = null;
this._length--;
return val;
}
let current = this.head;
while (current.next !== this.tail) {
current = current.next!;
}
const val = this.tail!.val;
current.next = null;
this.tail = current;
this._length--;
return val;
}
/**
* The `shift()` function removes and returns the value of the first node in a linked list.
* @returns The value of the node that is being removed from the beginning of the linked list.
*/
shift(): T | null {
if (!this.head) return null;
const removedNode = this.head;
this.head = this.head.next;
this._length--;
return removedNode.val;
}
/**
* The unshift function adds a new node with the given value to the beginning of a singly linked list.
* @param {T} val - The parameter "val" represents the value of the new node that will be added to the beginning of the
* linked list.
*/
unshift(val: T): void {
const newNode = new SinglyLinkedListNode(val);
if (!this.head) {
this.head = newNode;
this.tail = newNode;
} else {
newNode.next = this.head;
this.head = newNode;
}
this._length++;
}
/**
* The function `getAt` returns the value at a specified index in a linked list, or null if the index is out of range.
* @param {number} index - The index parameter is a number that represents the position of the element we want to
* retrieve from the list.
* @returns The method `getAt(index: number): T | null` returns the value at the specified index in the linked list, or
* `null` if the index is out of bounds.
*/
getAt(index: number): T | null {
if (index < 0 || index >= this.length) return null;
let current = this.head;
for (let i = 0; i < index; i++) {
current = current!.next;
}
return current!.val;
}
/**
* The function `getNodeAt` returns the node at a given index in a singly linked list.
* @param {number} index - The `index` parameter is a number that represents the position of the node we want to
* retrieve from the linked list. It indicates the zero-based index of the node we want to access.
* @returns The method `getNodeAt(index: number)` returns a `SinglyLinkedListNode<T>` object if the node at the
* specified index exists, or `null` if the index is out of bounds.
*/
getNodeAt(index: number): SinglyLinkedListNode<T> | null {
let current = this.head;
for (let i = 0; i < index; i++) {
current = current!.next;
}
return current;
}
/**
* The `deleteAt` function removes an element at a specified index from a linked list and returns the removed element.
* @param {number} index - The index parameter represents the position of the element that needs to be deleted in the
* data structure. It is of type number.
* @returns The method `deleteAt` returns the value of the node that was deleted, or `null` if the index is out of
* bounds.
*/
deleteAt(index: number): T | null {
if (index < 0 || index >= this.length) return null;
if (index === 0) return this.shift();
if (index === this.length - 1) return this.pop();
const prevNode = this.getNodeAt(index - 1);
const removedNode = prevNode!.next;
prevNode!.next = removedNode!.next;
this._length--;
return removedNode!.val;
}
delete(valueOrNode: T): boolean;
delete(valueOrNode: SinglyLinkedListNode<T>): boolean;
/**
* The delete function removes a node with a specific value from a singly linked list.
* @param {T | SinglyLinkedListNode<T>} valueOrNode - The `valueOrNode` parameter can accept either a value of type `T`
* or a `SinglyLinkedListNode<T>` object.
* @returns The `delete` method returns a boolean value. It returns `true` if the value or node is found and
* successfully deleted from the linked list, and `false` if the value or node is not found in the linked list.
*/
delete(valueOrNode: T | SinglyLinkedListNode<T>): boolean {
let value: T;
if (valueOrNode instanceof SinglyLinkedListNode) {
value = valueOrNode.val;
} else {
value = valueOrNode;
}
let current = this.head, prev = null;
while (current) {
if (current.val === value) {
if (prev === null) {
this.head = current.next;
if (current === this.tail) {
this.tail = null;
}
} else {
prev.next = current.next;
if (current === this.tail) {
this.tail = prev;
}
}
this._length--;
return true;
}
prev = current;
current = current.next;
}
return false;
}
/**
* The `insertAt` function inserts a value at a specified index in a singly linked list.
* @param {number} index - The index parameter represents the position at which the new value should be inserted in the
* linked list. It is of type number.
* @param {T} val - The `val` parameter represents the value that you want to insert into the linked list at the
* specified index.
* @returns The `insert` method returns a boolean value. It returns `true` if the insertion is successful, and `false`
* if the index is out of bounds.
*/
insertAt(index: number, val: T): boolean {
if (index < 0 || index > this.length) return false;
if (index === 0) {
this.unshift(val);
return true;
}
if (index === this.length) {
this.push(val);
return true;
}
const newNode = new SinglyLinkedListNode(val);
const prevNode = this.getNodeAt(index - 1);
newNode.next = prevNode!.next;
prevNode!.next = newNode;
this._length++;
return true;
}
/**
* The function checks if the length of a data structure is equal to zero and returns a boolean value indicating
* whether it is empty or not.
* @returns A boolean value indicating whether the length of the object is equal to 0.
*/
isEmpty(): boolean {
return this.length === 0;
}
/**
* The `clear` function resets the linked list by setting the head, tail, and length to null and 0 respectively.
*/
clear(): void {
this._head = null;
this._tail = null;
this._length = 0;
}
/**
* The `toArray` function converts a linked list into an array.
* @returns The `toArray()` method is returning an array of type `T[]`.
*/
toArray(): T[] {
const array: T[] = [];
let current = this.head;
while (current) {
array.push(current.val);
current = current.next;
}
return array;
}
/**
* The `reverse` function reverses the order of the nodes in a singly linked list.
* @returns The reverse() method does not return anything. It has a return type of void.
*/
reverse(): void {
if (!this.head || this.head === this.tail) return;
let prev: SinglyLinkedListNode<T> | null = null;
let current: SinglyLinkedListNode<T> | null = this.head;
let next: SinglyLinkedListNode<T> | null = null;
while (current) {
next = current.next;
current.next = prev;
prev = current;
current = next;
}
[this.head, this.tail] = [this.tail!, this.head!];
}
/**
* The `find` function iterates through a linked list and returns the first element that satisfies a given condition.
* @param callback - A function that takes a value of type T as its parameter and returns a boolean value. This
* function is used to determine whether a particular value in the linked list satisfies a certain condition.
* @returns The method `find` returns the first element in the linked list that satisfies the condition specified by
* the callback function. If no element satisfies the condition, it returns `null`.
*/
find(callback: (val: T) => boolean): T | null {
let current = this.head;
while (current) {
if (callback(current.val)) {
return current.val;
}
current = current.next;
}
return null;
}
/**
* The `indexOf` function returns the index of the first occurrence of a given value in a linked list.
* @param {T} value - The value parameter is the value that you want to find the index of in the linked list.
* @returns The method is returning the index of the first occurrence of the specified value in the linked list. If the
* value is not found, it returns -1.
*/
indexOf(value: T): number {
let index = 0;
let current = this.head;
while (current) {
if (current.val === value) {
return index;
}
index++;
current = current.next;
}
return -1;
}
/**
* The function finds a node in a singly linked list by its value and returns the node if found, otherwise returns
* null.
* @param {T} value - The value parameter is the value that we want to search for in the linked list.
* @returns a `SinglyLinkedListNode<T>` if a node with the specified value is found in the linked list. If no node with
* the specified value is found, the function returns `null`.
*/
findNode(value: T): SinglyLinkedListNode<T> | null {
let current = this.head;
while (current) {
if (current.val === value) {
return current;
}
current = current.next;
}
return null;
}
insertBefore(existingValue: T, newValue: T): boolean
insertBefore(existingValue: SinglyLinkedListNode<T>, newValue: T): boolean
/**
* The `insertBefore` function inserts a new value before an existing value in a singly linked list.
* @param {T | SinglyLinkedListNode<T>} existingValueOrNode - The existing value or node that you want to insert the
* new value before. It can be either the value itself or a node containing the value in the linked list.
* @param {T} newValue - The `newValue` parameter represents the value that you want to insert into the linked list.
* @returns The method `insertBefore` returns a boolean value. It returns `true` if the new value was successfully
* inserted before the existing value, and `false` otherwise.
*/
insertBefore(existingValueOrNode: T | SinglyLinkedListNode<T>, newValue: T): boolean {
if (!this.head) return false;
let existingValue: T;
if (existingValueOrNode instanceof SinglyLinkedListNode) {
existingValue = existingValueOrNode.val;
} else {
existingValue = existingValueOrNode;
}
if (this.head.val === existingValue) {
this.unshift(newValue);
return true;
}
let current = this.head;
while (current.next) {
if (current.next.val === existingValue) {
const newNode = new SinglyLinkedListNode(newValue);
newNode.next = current.next;
current.next = newNode;
this._length++;
return true;
}
current = current.next;
}
return false;
}
insertAfter(existingValueOrNode: T, newValue: T): boolean
insertAfter(existingValueOrNode: SinglyLinkedListNode<T>, newValue: T): boolean
/**
* The `insertAfter` function inserts a new node with a given value after an existing node in a singly linked list.
* @param {T | SinglyLinkedListNode<T>} existingValueOrNode - The existing value or node in the linked list after which
* the new value will be inserted. It can be either the value of the existing node or the existing node itself.
* @param {T} newValue - The value that you want to insert into the linked list after the existing value or node.
* @returns The method returns a boolean value. It returns true if the new value was successfully inserted after the
* existing value or node, and false if the existing value or node was not found in the linked list.
*/
insertAfter(existingValueOrNode: T | SinglyLinkedListNode<T>, newValue: T): boolean {
let existingNode: T | SinglyLinkedListNode<T> | null;
if (existingValueOrNode instanceof SinglyLinkedListNode) {
existingNode = existingValueOrNode;
} else {
existingNode = this.findNode(existingValueOrNode);
}
if (existingNode) {
const newNode = new SinglyLinkedListNode(newValue);
newNode.next = existingNode.next;
existingNode.next = newNode;
if (existingNode === this.tail) {
this.tail = newNode;
}
this._length++;
return true;
}
return false;
}
/**
* The function counts the number of occurrences of a given value in a linked list.
* @param {T} value - The value parameter is the value that you want to count the occurrences of in the linked list.
* @returns The count of occurrences of the given value in the linked list.
*/
countOccurrences(value: T): number {
let count = 0;
let current = this.head;
while (current) {
if (current.val === value) {
count++;
}
current = current.next;
}
return count;
}
}

View file

@ -7,21 +7,21 @@
*/
// todo need to be improved
export class MatrixNTI2D<T = number> {
private readonly _matrix: Array<Array<T>>;
private readonly _matrix: Array<Array<T>>;
/**
* The constructor creates a matrix with the specified number of rows and columns, and initializes all elements to a
* given initial value or 0 if not provided.
* @param options - An object containing the following properties:
*/
constructor(options: { row: number, col: number, initialVal?: T }) {
const {row, col, initialVal} = options;
this._matrix = new Array(row).fill(undefined).map(() => new Array(col).fill(initialVal || 0));
}
/**
* The constructor creates a matrix with the specified number of rows and columns, and initializes all elements to a
* given initial value or 0 if not provided.
* @param options - An object containing the following properties:
*/
constructor(options: { row: number, col: number, initialVal?: T }) {
const {row, col, initialVal} = options;
this._matrix = new Array(row).fill(undefined).map(() => new Array(col).fill(initialVal || 0));
}
/* The `toArray` method returns the matrix as a two-dimensional array. It converts the internal representation of the
matrix, which is an array of arrays, into a format that is more commonly used in JavaScript. */
toArray(): Array<Array<T>> {
return this._matrix;
}
/* The `toArray` method returns the matrix as a two-dimensional array. It converts the internal representation of the
matrix, which is an array of arrays, into a format that is more commonly used in JavaScript. */
toArray(): Array<Array<T>> {
return this._matrix;
}
}

View file

@ -8,201 +8,201 @@
import Vector2D from './vector2d'
export class Matrix2D {
private readonly _matrix: number[][];
private readonly _matrix: number[][];
/**
* The constructor function initializes a Matrix2D object with either a default identity matrix, or a provided matrix
* or Vector2D object.
* @param {number[][] | Vector2D} [value] - The `value` parameter can be either a 2D array of numbers (`number[][]`) or
* an instance of the `Vector2D` class.
*/
constructor(value?: number[][] | Vector2D) {
if (typeof value === 'undefined') {
this._matrix = Matrix2D.identity
} else if (value instanceof Vector2D) {
this._matrix = Matrix2D.identity
this._matrix[0][0] = value.x
this._matrix[1][0] = value.y
this._matrix[2][0] = value.w
} else {
this._matrix = value
/**
* The constructor function initializes a Matrix2D object with either a default identity matrix, or a provided matrix
* or Vector2D object.
* @param {number[][] | Vector2D} [value] - The `value` parameter can be either a 2D array of numbers (`number[][]`) or
* an instance of the `Vector2D` class.
*/
constructor(value?: number[][] | Vector2D) {
if (typeof value === 'undefined') {
this._matrix = Matrix2D.identity
} else if (value instanceof Vector2D) {
this._matrix = Matrix2D.identity
this._matrix[0][0] = value.x
this._matrix[1][0] = value.y
this._matrix[2][0] = value.w
} else {
this._matrix = value
}
}
/**
* The function returns a 2D array with three empty arrays.
* @returns An empty 2-dimensional array with 3 empty arrays inside.
*/
static get empty(): number[][] {
return [[], [], []]
}
/**
* The above function returns a 3x3 identity matrix.
* @returns The method is returning a 2-dimensional array of numbers representing the identity matrix.
*/
static get identity(): number[][] {
return [
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]
}
/**
* The function returns a two-dimensional array of numbers.
* @returns The getter method is returning the value of the private variable `_matrix`, which is a two-dimensional
* array of numbers.
*/
get m(): number[][] {
return this._matrix
}
/**
* The function "toVector" returns a new Vector2D object with the values from the first and second elements of the
* _matrix array.
* @returns A new instance of the Vector2D class is being returned. The values of the returned vector are taken from
* the first column of the matrix.
*/
get toVector(): Vector2D {
return new Vector2D(this._matrix[0][0], this._matrix[1][0])
}
/**
* The function takes two 2D matrices as input and returns their sum as a new 2D matrix.
* @param {Matrix2D} matrix1 - Matrix2D - The first matrix to be added.
* @param {Matrix2D} matrix2 - The parameter `matrix2` is a Matrix2D object.
* @returns a new instance of the Matrix2D class, which is created using the result array.
*/
static add(matrix1: Matrix2D, matrix2: Matrix2D): Matrix2D {
const result = Matrix2D.empty
for (let i = 0; i < 3; i++) {
for (let j = 0; j < 3; j++) {
result[i][j] = matrix1.m[i][j] + matrix2.m[i][j]
}
}
return new Matrix2D(result);
}
/**
* The function subtracts two 2D matrices and returns the result as a new Matrix2D object.
* @param {Matrix2D} matrix1 - Matrix2D - The first matrix to subtract from.
* @param {Matrix2D} matrix2 - Matrix2D is a class representing a 2D matrix. It has a property `m` which is a 2D array
* representing the matrix elements.
* @returns a new instance of the Matrix2D class, which is created using the result array.
*/
static subtract(matrix1: Matrix2D, matrix2: Matrix2D): Matrix2D {
const result = Matrix2D.empty
for (let i = 0; i < 3; i++) {
for (let j = 0; j < 3; j++) {
result[i][j] = matrix1.m[i][j] - matrix2.m[i][j]
}
}
return new Matrix2D(result);
}
/**
* The function multiplies two 2D matrices and returns the result as a new Matrix2D object.
* @param {Matrix2D} matrix1 - A 2D matrix represented by the Matrix2D class.
* @param {Matrix2D} matrix2 - The parameter `matrix2` is a 2D matrix of size 3x3.
* @returns a new instance of the Matrix2D class, created using the result array.
*/
static multiply(matrix1: Matrix2D, matrix2: Matrix2D): Matrix2D {
const result = Matrix2D.empty
for (let i = 0; i < 3; i++) {
for (let j = 0; j < 3; j++) {
result[i][j] = 0;
for (let k = 0; k < 3; k++) {
result[i][j] += matrix1.m[i][k] * matrix2.m[k][j];
}
}
}
return new Matrix2D(result);
}
/**
* The function returns a 2D array with three empty arrays.
* @returns An empty 2-dimensional array with 3 empty arrays inside.
*/
static get empty(): number[][] {
return [[], [], []]
/**
* The function multiplies each element of a 2D matrix by a given value and returns the resulting matrix.
* @param {Matrix2D} matrix - The `matrix` parameter is an instance of the `Matrix2D` class, which represents a 2D
* matrix. It contains a property `m` that is a 2D array representing the matrix elements.
* @param {number} value - The `value` parameter is a number that you want to multiply each element of the `matrix` by.
* @returns a new instance of the Matrix2D class, which is created using the result array.
*/
static multiplyByValue(matrix: Matrix2D, value: number): Matrix2D {
const result = Matrix2D.empty
for (let i = 0; i < 3; i++) {
for (let j = 0; j < 3; j++) {
result[i][j] = matrix.m[i][j] * value
}
}
return new Matrix2D(result);
}
/**
* The above function returns a 3x3 identity matrix.
* @returns The method is returning a 2-dimensional array of numbers representing the identity matrix.
*/
static get identity(): number[][] {
return [
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]
}
/**
* The function multiplies a 2D matrix by a 2D vector and returns the result as a 2D vector.
* @param {Matrix2D} matrix - The parameter "matrix" is of type Matrix2D. It represents a 2-dimensional matrix.
* @param {Vector2D} vector - The "vector" parameter is a 2D vector, represented by an object of type Vector2D.
* @returns a Vector2D.
*/
static multiplyByVector(matrix: Matrix2D, vector: Vector2D): Vector2D {
return Matrix2D.multiply(matrix, new Matrix2D(vector)).toVector
}
/**
* The function returns a two-dimensional array of numbers.
* @returns The getter method is returning the value of the private variable `_matrix`, which is a two-dimensional
* array of numbers.
*/
get m(): number[][] {
return this._matrix
}
/**
* The function returns a 2D matrix that scales and flips a vector around the center of a given width and height.
* @param {number} width - The width parameter represents the width of the view or the canvas. It is a number that
* specifies the width in pixels or any other unit of measurement.
* @param {number} height - The height parameter represents the height of the view or the canvas. It is used to
* calculate the centerY value, which is the vertical center of the view.
* @returns a Matrix2D object.
*/
static view(width: number, height: number): Matrix2D {
const scaleStep = 1 // Scale every vector * scaleStep
const centerX = width / 2
const centerY = height / 2
const flipX = Math.cos(Math.PI) // rotate 180deg / 3.14radian around X-axis
/**
* The function "toVector" returns a new Vector2D object with the values from the first and second elements of the
* _matrix array.
* @returns A new instance of the Vector2D class is being returned. The values of the returned vector are taken from
* the first column of the matrix.
*/
get toVector(): Vector2D {
return new Vector2D(this._matrix[0][0], this._matrix[1][0])
}
return new Matrix2D([
[scaleStep, 0, centerX],
[0, flipX * scaleStep, centerY],
[0, 0, 1]])
}
/**
* The function takes two 2D matrices as input and returns their sum as a new 2D matrix.
* @param {Matrix2D} matrix1 - Matrix2D - The first matrix to be added.
* @param {Matrix2D} matrix2 - The parameter `matrix2` is a Matrix2D object.
* @returns a new instance of the Matrix2D class, which is created using the result array.
*/
static add(matrix1: Matrix2D, matrix2: Matrix2D): Matrix2D {
const result = Matrix2D.empty
for (let i = 0; i < 3; i++) {
for (let j = 0; j < 3; j++) {
result[i][j] = matrix1.m[i][j] + matrix2.m[i][j]
}
}
return new Matrix2D(result);
}
/**
* The function scales a matrix by a given factor.
* @param {number} factor - The factor parameter is a number that represents the scaling factor by which the matrix
* should be scaled.
* @returns the result of multiplying a new instance of Matrix2D by the given factor.
*/
static scale(factor: number) {
return Matrix2D.multiplyByValue(new Matrix2D(), factor)
}
/**
* The function subtracts two 2D matrices and returns the result as a new Matrix2D object.
* @param {Matrix2D} matrix1 - Matrix2D - The first matrix to subtract from.
* @param {Matrix2D} matrix2 - Matrix2D is a class representing a 2D matrix. It has a property `m` which is a 2D array
* representing the matrix elements.
* @returns a new instance of the Matrix2D class, which is created using the result array.
*/
static subtract(matrix1: Matrix2D, matrix2: Matrix2D): Matrix2D {
const result = Matrix2D.empty
for (let i = 0; i < 3; i++) {
for (let j = 0; j < 3; j++) {
result[i][j] = matrix1.m[i][j] - matrix2.m[i][j]
}
}
return new Matrix2D(result);
}
/**
* The function "rotate" takes an angle in radians and returns a 2D transformation matrix for rotating objects.
* @param {number} radians - The "radians" parameter is the angle in radians by which you want to rotate an object.
* @returns The code is returning a new instance of a Matrix2D object.
*/
static rotate(radians: number) {
const cos = Math.cos(radians)
const sin = Math.sin(radians)
/**
* The function multiplies two 2D matrices and returns the result as a new Matrix2D object.
* @param {Matrix2D} matrix1 - A 2D matrix represented by the Matrix2D class.
* @param {Matrix2D} matrix2 - The parameter `matrix2` is a 2D matrix of size 3x3.
* @returns a new instance of the Matrix2D class, created using the result array.
*/
static multiply(matrix1: Matrix2D, matrix2: Matrix2D): Matrix2D {
const result = Matrix2D.empty
for (let i = 0; i < 3; i++) {
for (let j = 0; j < 3; j++) {
result[i][j] = 0;
for (let k = 0; k < 3; k++) {
result[i][j] += matrix1.m[i][k] * matrix2.m[k][j];
}
}
}
return new Matrix2D(result);
}
return new Matrix2D([
[cos, -sin, 0],
[sin, cos, 0],
[0, 0, 1]])
}
/**
* The function multiplies each element of a 2D matrix by a given value and returns the resulting matrix.
* @param {Matrix2D} matrix - The `matrix` parameter is an instance of the `Matrix2D` class, which represents a 2D
* matrix. It contains a property `m` that is a 2D array representing the matrix elements.
* @param {number} value - The `value` parameter is a number that you want to multiply each element of the `matrix` by.
* @returns a new instance of the Matrix2D class, which is created using the result array.
*/
static multiplyByValue(matrix: Matrix2D, value: number): Matrix2D {
const result = Matrix2D.empty
for (let i = 0; i < 3; i++) {
for (let j = 0; j < 3; j++) {
result[i][j] = matrix.m[i][j] * value
}
}
return new Matrix2D(result);
}
/**
* The function multiplies a 2D matrix by a 2D vector and returns the result as a 2D vector.
* @param {Matrix2D} matrix - The parameter "matrix" is of type Matrix2D. It represents a 2-dimensional matrix.
* @param {Vector2D} vector - The "vector" parameter is a 2D vector, represented by an object of type Vector2D.
* @returns a Vector2D.
*/
static multiplyByVector(matrix: Matrix2D, vector: Vector2D): Vector2D {
return Matrix2D.multiply(matrix, new Matrix2D(vector)).toVector
}
/**
* The function returns a 2D matrix that scales and flips a vector around the center of a given width and height.
* @param {number} width - The width parameter represents the width of the view or the canvas. It is a number that
* specifies the width in pixels or any other unit of measurement.
* @param {number} height - The height parameter represents the height of the view or the canvas. It is used to
* calculate the centerY value, which is the vertical center of the view.
* @returns a Matrix2D object.
*/
static view(width: number, height: number): Matrix2D {
const scaleStep = 1 // Scale every vector * scaleStep
const centerX = width / 2
const centerY = height / 2
const flipX = Math.cos(Math.PI) // rotate 180deg / 3.14radian around X-axis
return new Matrix2D([
[scaleStep, 0, centerX],
[0, flipX * scaleStep, centerY],
[0, 0, 1]])
}
/**
* The function scales a matrix by a given factor.
* @param {number} factor - The factor parameter is a number that represents the scaling factor by which the matrix
* should be scaled.
* @returns the result of multiplying a new instance of Matrix2D by the given factor.
*/
static scale(factor: number) {
return Matrix2D.multiplyByValue(new Matrix2D(), factor)
}
/**
* The function "rotate" takes an angle in radians and returns a 2D transformation matrix for rotating objects.
* @param {number} radians - The "radians" parameter is the angle in radians by which you want to rotate an object.
* @returns The code is returning a new instance of a Matrix2D object.
*/
static rotate(radians: number) {
const cos = Math.cos(radians)
const sin = Math.sin(radians)
return new Matrix2D([
[cos, -sin, 0],
[sin, cos, 0],
[0, 0, 1]])
}
/**
* The translate function takes a 2D vector and returns a 2D matrix that represents a translation transformation.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D. It represents a 2D vector with components x
* and y, and an optional w component.
* @returns The method is returning a new instance of the Matrix2D class.
*/
static translate(vector: Vector2D): Matrix2D {
return new Matrix2D([
[1, 0, vector.x],
[0, 1, vector.y],
[0, 0, vector.w]])
}
/**
* The translate function takes a 2D vector and returns a 2D matrix that represents a translation transformation.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D. It represents a 2D vector with components x
* and y, and an optional w component.
* @returns The method is returning a new instance of the Matrix2D class.
*/
static translate(vector: Vector2D): Matrix2D {
return new Matrix2D([
[1, 0, vector.x],
[0, 1, vector.y],
[0, 0, vector.w]])
}
}
export default Matrix2D
export default Matrix2D

View file

@ -8,115 +8,115 @@
import type {Direction, NavigatorParams, Turning} from '../../types';
export class Character {
direction: Direction;
turn: () => Character;
direction: Direction;
turn: () => Character;
/**
* The constructor function takes in a direction and turning object and sets the direction and turn properties of the
* Character class.
* @param {Direction} direction - The direction parameter is used to specify the current direction of the character. It
* can be any value that represents a direction, such as "north", "south", "east", or "west".
* @param {Turning} turning - The `turning` parameter is an object that maps each direction to the corresponding
* turning direction. It is used to determine the new direction when the character turns.
*/
constructor(direction: Direction, turning: Turning) {
this.direction = direction;
this.turn = () => new Character(turning[direction], turning);
}
/**
* The constructor function takes in a direction and turning object and sets the direction and turn properties of the
* Character class.
* @param {Direction} direction - The direction parameter is used to specify the current direction of the character. It
* can be any value that represents a direction, such as "north", "south", "east", or "west".
* @param {Turning} turning - The `turning` parameter is an object that maps each direction to the corresponding
* turning direction. It is used to determine the new direction when the character turns.
*/
constructor(direction: Direction, turning: Turning) {
this.direction = direction;
this.turn = () => new Character(turning[direction], turning);
}
}
export class Navigator<T = number> {
onMove: (cur: [number, number]) => void;
private readonly _matrix: T[][];
private readonly _cur: [number, number];
private _character: Character;
private readonly _VISITED: T;
onMove: (cur: [number, number]) => void;
private readonly _matrix: T[][];
private readonly _cur: [number, number];
private _character: Character;
private readonly _VISITED: T;
/**
* The constructor initializes the Navigator object with the given parameters and sets the current position as visited
* in the matrix.
* @param - - `matrix`: a 2D array representing the grid or map
*/
constructor({matrix, turning, onMove, init: {cur, charDir, VISITED}}: NavigatorParams<T>) {
this._matrix = matrix;
this._cur = cur;
this._character = new Character(charDir, turning);
this.onMove = onMove;
this.onMove && this.onMove(this._cur);
this._VISITED = VISITED;
this._matrix[this._cur[0]][this._cur[1]] = this._VISITED;
/**
* The constructor initializes the Navigator object with the given parameters and sets the current position as visited
* in the matrix.
* @param - - `matrix`: a 2D array representing the grid or map
*/
constructor({matrix, turning, onMove, init: {cur, charDir, VISITED}}: NavigatorParams<T>) {
this._matrix = matrix;
this._cur = cur;
this._character = new Character(charDir, turning);
this.onMove = onMove;
this.onMove && this.onMove(this._cur);
this._VISITED = VISITED;
this._matrix[this._cur[0]][this._cur[1]] = this._VISITED;
}
/**
* The "start" function moves the character in its current direction until it encounters an obstacle, then it turns the
* character and repeats the process.
*/
start() {
while (this.check(this._character.direction) || this.check(this._character.turn().direction)) {
const {direction} = this._character;
if (this.check(direction)) {
this.move(direction);
} else if (this.check(this._character.turn().direction)) {
this._character = this._character.turn();
}
}
}
/**
* The function checks if there is a valid move in the specified direction in a matrix.
* @param {Direction} direction - The direction parameter is a string that represents the direction in which to check.
* It can be one of the following values: 'up', 'right', 'down', or 'left'.
* @returns a boolean value.
*/
check(direction: Direction) {
let forward: T | undefined, row: T[] | undefined;
const matrix = this._matrix;
const [i, j] = this._cur;
switch (direction) {
case 'up':
row = matrix[i - 1];
if (!row) return false;
forward = row[j];
break;
case 'right':
forward = matrix[i][j + 1];
break;
case 'down':
row = matrix[i + 1];
if (!row) return false;
forward = row[j];
break;
case 'left':
forward = matrix[i][j - 1];
break;
}
return forward !== undefined && forward !== this._VISITED;
}
/**
* The `move` function updates the current position based on the given direction and updates the matrix accordingly.
* @param {Direction} direction - The `direction` parameter is a string that represents the direction in which to move.
* It can have one of the following values: 'up', 'right', 'down', or 'left'.
*/
move(direction: Direction) {
switch (direction) {
case 'up':
this._cur[0]--;
break;
case 'right':
this._cur[1]++;
break;
case 'down':
this._cur[0]++;
break;
case 'left':
this._cur[1]--;
break;
}
/**
* The "start" function moves the character in its current direction until it encounters an obstacle, then it turns the
* character and repeats the process.
*/
start() {
while (this.check(this._character.direction) || this.check(this._character.turn().direction)) {
const {direction} = this._character;
if (this.check(direction)) {
this.move(direction);
} else if (this.check(this._character.turn().direction)) {
this._character = this._character.turn();
}
}
}
/**
* The function checks if there is a valid move in the specified direction in a matrix.
* @param {Direction} direction - The direction parameter is a string that represents the direction in which to check.
* It can be one of the following values: 'up', 'right', 'down', or 'left'.
* @returns a boolean value.
*/
check(direction: Direction) {
let forward: T | undefined, row: T[] | undefined;
const matrix = this._matrix;
const [i, j] = this._cur;
switch (direction) {
case 'up':
row = matrix[i - 1];
if (!row) return false;
forward = row[j];
break;
case 'right':
forward = matrix[i][j + 1];
break;
case 'down':
row = matrix[i + 1];
if (!row) return false;
forward = row[j];
break;
case 'left':
forward = matrix[i][j - 1];
break;
}
return forward !== undefined && forward !== this._VISITED;
}
/**
* The `move` function updates the current position based on the given direction and updates the matrix accordingly.
* @param {Direction} direction - The `direction` parameter is a string that represents the direction in which to move.
* It can have one of the following values: 'up', 'right', 'down', or 'left'.
*/
move(direction: Direction) {
switch (direction) {
case 'up':
this._cur[0]--;
break;
case 'right':
this._cur[1]++;
break;
case 'down':
this._cur[0]++;
break;
case 'left':
this._cur[1]--;
break;
}
const [i, j] = this._cur;
this._matrix[i][j] = this._VISITED;
this.onMove && this.onMove(this._cur);
}
const [i, j] = this._cur;
this._matrix[i][j] = this._VISITED;
this.onMove && this.onMove(this._cur);
}
}

View file

@ -6,311 +6,311 @@
* @license MIT License
*/
export class Vector2D {
constructor(
public x: number = 0,
public y: number = 0,
public w: number = 1 // needed for matrix multiplication
) {
constructor(
public x: number = 0,
public y: number = 0,
public w: number = 1 // needed for matrix multiplication
) {
}
/**
* The function checks if the x and y values of a point are both zero.
* @returns A boolean value indicating whether both the x and y properties of the object are equal to 0.
*/
get isZero(): boolean {
return this.x === 0 && this.y === 0
}
/**
* The above function calculates the length of a vector using the Pythagorean theorem.
* @returns The length of a vector, calculated using the Pythagorean theorem.
*/
get length(): number {
return Math.sqrt((this.x * this.x) + (this.y * this.y))
}
/**
* The function calculates the square of the length of a vector.
* @returns The method is returning the sum of the squares of the x and y values.
*/
get lengthSq(): number {
return (this.x * this.x) + (this.y * this.y)
}
/**
* The "rounded" function returns a new Vector2D object with the x and y values rounded to the nearest whole number.
* @returns The method is returning a new instance of the Vector2D class with the x and y values rounded to the nearest
* whole number.
*/
get rounded(): Vector2D {
return new Vector2D(Math.round(this.x), Math.round(this.y))
}
/**
* The function "add" takes two Vector2D objects as parameters and returns a new Vector2D object with the sum of their
* x and y components.
* @param {Vector2D} vector1 - The parameter `vector1` is an instance of the `Vector2D` class. It represents a
* 2-dimensional vector with an `x` and `y` component.
* @param {Vector2D} vector2 - The parameter "vector2" is of type Vector2D. It represents a 2-dimensional vector with
* an x and y component.
* @returns The method is returning a new instance of the Vector2D class with the x and y components of the two input
* vectors added together.
*/
static add(vector1: Vector2D, vector2: Vector2D): Vector2D {
return new Vector2D(vector1.x + vector2.x, vector1.y + vector2.y)
}
/**
* The subtract function takes two Vector2D objects as parameters and returns a new Vector2D object with the x and y
* components subtracted.
* @param {Vector2D} vector1 - The parameter `vector1` is an instance of the `Vector2D` class, representing a
* 2-dimensional vector. It has properties `x` and `y` which represent the x and y components of the vector
* respectively.
* @param {Vector2D} vector2 - The parameter "vector2" is a Vector2D object. It represents the second vector that you
* want to subtract from the first vector.
* @returns The method is returning a new Vector2D object with the x and y components subtracted from vector1 and
* vector2.
*/
static subtract(vector1: Vector2D, vector2: Vector2D): Vector2D {
return new Vector2D(vector1.x - vector2.x, vector1.y - vector2.y)
}
/**
* The function subtracts a given value from the x and y components of a Vector2D object and returns a new Vector2D
* object.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D, which represents a 2-dimensional vector with
* x and y components.
* @param {number} value - The "value" parameter is a number that will be subtracted from both the x and y components
* of the "vector" parameter.
* @returns A new Vector2D object with the x and y values subtracted by the given value.
*/
static subtractValue(vector: Vector2D, value: number): Vector2D {
return new Vector2D(vector.x - value, vector.y - value)
}
/**
* The function multiplies a Vector2D object by a given value.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D, which represents a 2-dimensional vector with
* x and y components.
* @param {number} value - The "value" parameter is a number that represents the value by which the x and y components
* of the vector will be multiplied.
* @returns A new Vector2D object with the x and y values multiplied by the given value.
*/
static multiply(vector: Vector2D, value: number): Vector2D {
return new Vector2D(vector.x * value, vector.y * value)
}
/**
* The function divides the x and y components of a Vector2D by a given value and returns a new Vector2D.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D, which represents a 2-dimensional vector with
* x and y components.
* @param {number} value - The value parameter is a number that will be used to divide the x and y components of the
* vector.
* @returns A new instance of the Vector2D class with the x and y values divided by the given value.
*/
static divide(vector: Vector2D, value: number): Vector2D {
return new Vector2D(vector.x / value, vector.y / value)
}
/**
* The function checks if two Vector2D objects are equal by comparing their x and y values.
* @param {Vector2D} vector1 - The parameter `vector1` is of type `Vector2D`, which represents a 2-dimensional vector.
* It has two properties: `x` and `y`, which represent the x and y components of the vector, respectively.
* @param {Vector2D} vector2 - The parameter "vector2" is of type Vector2D.
* @returns a boolean value, which indicates whether the two input vectors are equal or not.
*/
static equals(vector1: Vector2D, vector2: Vector2D): boolean {
return vector1.x === vector2.x && vector1.y === vector2.y
}
/**
* The function checks if two Vector2D objects are equal within a specified rounding factor.
* @param {Vector2D} vector1 - The first vector to compare.
* @param {Vector2D} vector2 - The parameter "vector2" is a Vector2D object, which represents a 2-dimensional vector.
* It is used as one of the inputs for the "equalsRounded" function.
* @param [roundingFactor=12] - The roundingFactor parameter is used to determine the threshold for considering two
* vectors as equal. If the absolute difference in the x and y components of the vectors is less than the
* roundingFactor, the vectors are considered equal.
* @returns a boolean value.
*/
static equalsRounded(vector1: Vector2D, vector2: Vector2D, roundingFactor = 12): boolean {
const vector = Vector2D.abs(Vector2D.subtract(vector1, vector2))
if (vector.x < roundingFactor && vector.y < roundingFactor) {
return true
}
/**
* The function checks if the x and y values of a point are both zero.
* @returns A boolean value indicating whether both the x and y properties of the object are equal to 0.
*/
get isZero(): boolean {
return this.x === 0 && this.y === 0
return false
}
/**
* The normalize function takes a vector as input and returns a normalized version of the vector.Normalizes the vector if it matches a certain condition
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D.
* @returns the normalized vector if its length is greater than a very small value (epsilon), otherwise it returns the
* original vector.
*/
static normalize(vector: Vector2D): Vector2D {
const length = vector.length
if (length > 2.220446049250313e-16) { // Epsilon
return Vector2D.divide(vector, length)
}
/**
* The above function calculates the length of a vector using the Pythagorean theorem.
* @returns The length of a vector, calculated using the Pythagorean theorem.
*/
get length(): number {
return Math.sqrt((this.x * this.x) + (this.y * this.y))
return vector
}
/**
* The function truncates a vector to a maximum length if it exceeds that length.Adjusts x and y so that the length of the vector does not exceed max
* @param {Vector2D} vector - A 2D vector represented by the Vector2D class.
* @param {number} max - The `max` parameter is a number that represents the maximum length that the `vector` should
* have.
* @returns either the original vector or a truncated version of the vector, depending on whether the length of the
* vector is greater than the maximum value specified.
*/
static truncate(vector: Vector2D, max: number): Vector2D {
if (vector.length > max) {
return Vector2D.multiply(Vector2D.normalize(vector), max)
}
/**
* The function calculates the square of the length of a vector.
* @returns The method is returning the sum of the squares of the x and y values.
*/
get lengthSq(): number {
return (this.x * this.x) + (this.y * this.y)
return vector
}
/**
* The function returns a new Vector2D object that is perpendicular to the input vector.The vector that is perpendicular to this one
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D.
* @returns A new Vector2D object is being returned.
*/
static perp(vector: Vector2D): Vector2D {
return new Vector2D(-vector.y, vector.x)
}
/**
* The reverse function takes a Vector2D object and returns a new Vector2D object with the negated x and y values.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D, which represents a 2-dimensional vector. It
* has two properties: "x" and "y", which represent the x and y components of the vector, respectively.
* @returns A new Vector2D object with the negated x and y values of the input vector. Returns the vector that is the reverse of this vector
*/
static reverse(vector: Vector2D): Vector2D {
return new Vector2D(-vector.x, -vector.y)
}
/**
* The function takes a Vector2D object as input and returns a new Vector2D object with the absolute values of its x
* and y components.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D, which represents a 2-dimensional vector. It
* has two properties: "x" and "y", which represent the x and y components of the vector, respectively.
* @returns The method is returning a new Vector2D object with the absolute values of the x and y components of the
* input vector.
*/
static abs(vector: Vector2D): Vector2D {
return new Vector2D(Math.abs(vector.x), Math.abs(vector.y))
}
/**
* The dot function calculates the dot product of two 2D vectors.The dot product of v1 and v2
* @param {Vector2D} vector1 - The parameter `vector1` represents a 2D vector with its x and y components.
* @param {Vector2D} vector2 - The "vector2" parameter is a Vector2D object. It represents a two-dimensional vector
* with an x and y component.
* @returns The dot product of the two input vectors.
*/
static dot(vector1: Vector2D, vector2: Vector2D): number {
return (vector1.x * vector2.x) + (vector1.y * vector2.y)
}
// /**
// * Transform vectors based on the current tranformation matrices: translation, rotation and scale
// * @param vectors The vectors to transform
// */
// static transform(vector: Vector2D, transformation: Matrix2D): Vector2D {
// return Matrix2D.multiplyByVector(transformation, vector)
// }
// /**
// * Transform vectors based on the current tranformation matrices: translation, rotation and scale
// * @param vectors The vectors to transform
// */
// static transformList(vectors: Vector2D[], transformation: Matrix2D): Vector2D[] {
// return vectors.map(vector => Matrix2D.multiplyByVector(transformation, vector))
// }
/**
* The function calculates the distance between two points in a two-dimensional space.
* @param {Vector2D} vector1 - The parameter `vector1` represents the first vector in 2D space, while `vector2`
* represents the second vector. Each vector has an `x` and `y` component, which represent their respective coordinates
* in the 2D space.
* @param {Vector2D} vector2 - The `vector2` parameter represents the second vector in the calculation of distance. It
* is an instance of the `Vector2D` class, which typically has properties `x` and `y` representing the coordinates of
* the vector in a 2D space.
* @returns The distance between vector1 and vector2.
*/
static distance(vector1: Vector2D, vector2: Vector2D): number {
const ySeparation = vector2.y - vector1.y
const xSeparation = vector2.x - vector1.x
return Math.sqrt((ySeparation * ySeparation) + (xSeparation * xSeparation))
}
/**
* The function calculates the squared distance between two 2D vectors.
* @param {Vector2D} vector1 - The parameter `vector1` represents the first vector, which is an instance of the
* `Vector2D` class. It contains the x and y coordinates of the vector.
* @param {Vector2D} vector2 - The `vector2` parameter represents the second vector in a two-dimensional space. It has
* properties `x` and `y` which represent the coordinates of the vector.
* @returns the square of the distance between the two input vectors.
*/
static distanceSq(vector1: Vector2D, vector2: Vector2D): number {
const ySeparation = vector2.y - vector1.y
const xSeparation = vector2.x - vector1.x
return (ySeparation * ySeparation) + (xSeparation * xSeparation)
}
/**
* The sign function determines the sign of the cross product between two 2D vectors.
* (assuming the Y axis is pointing down, X axis to right like a Window app)
* @param {Vector2D} vector1 - The parameter `vector1` is of type `Vector2D`, which represents a 2-dimensional vector.
* It likely has properties `x` and `y` representing the x and y components of the vector, respectively.
* @param {Vector2D} vector2 - The above code defines a function called "sign" that takes two parameters: vector1 and
* vector2. Both vector1 and vector2 are of type Vector2D.
* @returns either -1 or 1. Returns positive if v2 is clockwise of this vector, negative if counterclockwise
*/
static sign(vector1: Vector2D, vector2: Vector2D): number {
if (vector1.y * vector2.x > vector1.x * vector2.y) {
return -1
}
/**
* The "rounded" function returns a new Vector2D object with the x and y values rounded to the nearest whole number.
* @returns The method is returning a new instance of the Vector2D class with the x and y values rounded to the nearest
* whole number.
*/
get rounded(): Vector2D {
return new Vector2D(Math.round(this.x), Math.round(this.y))
}
return 1
}
/**
* The function "add" takes two Vector2D objects as parameters and returns a new Vector2D object with the sum of their
* x and y components.
* @param {Vector2D} vector1 - The parameter `vector1` is an instance of the `Vector2D` class. It represents a
* 2-dimensional vector with an `x` and `y` component.
* @param {Vector2D} vector2 - The parameter "vector2" is of type Vector2D. It represents a 2-dimensional vector with
* an x and y component.
* @returns The method is returning a new instance of the Vector2D class with the x and y components of the two input
* vectors added together.
*/
static add(vector1: Vector2D, vector2: Vector2D): Vector2D {
return new Vector2D(vector1.x + vector2.x, vector1.y + vector2.y)
}
/**
* The function calculates the angle between a given vector and the negative y-axis.
* @param {Vector2D} vector - The "vector" parameter is an instance of the Vector2D class, which represents a
* 2-dimensional vector. It has two properties: "x" and "y", which represent the x and y components of the vector,
* respectively.
* @returns the angle between the given vector and the vector (0, -1) in radians.Returns the angle between origin and the given vector in radians
*/
static angle(vector: Vector2D): number {
const origin = new Vector2D(0, -1)
const radian = Math.acos(Vector2D.dot(vector, origin) / (vector.length * origin.length))
return Vector2D.sign(vector, origin) === 1 ? ((Math.PI * 2) - radian) : radian
}
/**
* The subtract function takes two Vector2D objects as parameters and returns a new Vector2D object with the x and y
* components subtracted.
* @param {Vector2D} vector1 - The parameter `vector1` is an instance of the `Vector2D` class, representing a
* 2-dimensional vector. It has properties `x` and `y` which represent the x and y components of the vector
* respectively.
* @param {Vector2D} vector2 - The parameter "vector2" is a Vector2D object. It represents the second vector that you
* want to subtract from the first vector.
* @returns The method is returning a new Vector2D object with the x and y components subtracted from vector1 and
* vector2.
*/
static subtract(vector1: Vector2D, vector2: Vector2D): Vector2D {
return new Vector2D(vector1.x - vector2.x, vector1.y - vector2.y)
}
/**
* The function "random" generates a random Vector2D object with x and y values within the specified range.
* @param {number} maxX - The maxX parameter represents the maximum value for the x-coordinate of the random vector.
* @param {number} maxY - The `maxY` parameter represents the maximum value for the y-coordinate of the generated
* random vector.
* @returns a new instance of the Vector2D class with random x and y values.
*/
static random(maxX: number, maxY: number): Vector2D {
const randX = Math.floor(Math.random() * maxX - (maxX / 2))
const randY = Math.floor(Math.random() * maxY - (maxY / 2))
return new Vector2D(randX, randY)
}
/**
* The function subtracts a given value from the x and y components of a Vector2D object and returns a new Vector2D
* object.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D, which represents a 2-dimensional vector with
* x and y components.
* @param {number} value - The "value" parameter is a number that will be subtracted from both the x and y components
* of the "vector" parameter.
* @returns A new Vector2D object with the x and y values subtracted by the given value.
*/
static subtractValue(vector: Vector2D, value: number): Vector2D {
return new Vector2D(vector.x - value, vector.y - value)
}
/**
* The function multiplies a Vector2D object by a given value.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D, which represents a 2-dimensional vector with
* x and y components.
* @param {number} value - The "value" parameter is a number that represents the value by which the x and y components
* of the vector will be multiplied.
* @returns A new Vector2D object with the x and y values multiplied by the given value.
*/
static multiply(vector: Vector2D, value: number): Vector2D {
return new Vector2D(vector.x * value, vector.y * value)
}
/**
* The function divides the x and y components of a Vector2D by a given value and returns a new Vector2D.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D, which represents a 2-dimensional vector with
* x and y components.
* @param {number} value - The value parameter is a number that will be used to divide the x and y components of the
* vector.
* @returns A new instance of the Vector2D class with the x and y values divided by the given value.
*/
static divide(vector: Vector2D, value: number): Vector2D {
return new Vector2D(vector.x / value, vector.y / value)
}
/**
* The function checks if two Vector2D objects are equal by comparing their x and y values.
* @param {Vector2D} vector1 - The parameter `vector1` is of type `Vector2D`, which represents a 2-dimensional vector.
* It has two properties: `x` and `y`, which represent the x and y components of the vector, respectively.
* @param {Vector2D} vector2 - The parameter "vector2" is of type Vector2D.
* @returns a boolean value, which indicates whether the two input vectors are equal or not.
*/
static equals(vector1: Vector2D, vector2: Vector2D): boolean {
return vector1.x === vector2.x && vector1.y === vector2.y
}
/**
* The function checks if two Vector2D objects are equal within a specified rounding factor.
* @param {Vector2D} vector1 - The first vector to compare.
* @param {Vector2D} vector2 - The parameter "vector2" is a Vector2D object, which represents a 2-dimensional vector.
* It is used as one of the inputs for the "equalsRounded" function.
* @param [roundingFactor=12] - The roundingFactor parameter is used to determine the threshold for considering two
* vectors as equal. If the absolute difference in the x and y components of the vectors is less than the
* roundingFactor, the vectors are considered equal.
* @returns a boolean value.
*/
static equalsRounded(vector1: Vector2D, vector2: Vector2D, roundingFactor = 12): boolean {
const vector = Vector2D.abs(Vector2D.subtract(vector1, vector2))
if (vector.x < roundingFactor && vector.y < roundingFactor) {
return true
}
return false
}
/**
* The normalize function takes a vector as input and returns a normalized version of the vector.Normalizes the vector if it matches a certain condition
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D.
* @returns the normalized vector if its length is greater than a very small value (epsilon), otherwise it returns the
* original vector.
*/
static normalize(vector: Vector2D): Vector2D {
const length = vector.length
if (length > 2.220446049250313e-16) { // Epsilon
return Vector2D.divide(vector, length)
}
return vector
}
/**
* The function truncates a vector to a maximum length if it exceeds that length.Adjusts x and y so that the length of the vector does not exceed max
* @param {Vector2D} vector - A 2D vector represented by the Vector2D class.
* @param {number} max - The `max` parameter is a number that represents the maximum length that the `vector` should
* have.
* @returns either the original vector or a truncated version of the vector, depending on whether the length of the
* vector is greater than the maximum value specified.
*/
static truncate(vector: Vector2D, max: number): Vector2D {
if (vector.length > max) {
return Vector2D.multiply(Vector2D.normalize(vector), max)
}
return vector
}
/**
* The function returns a new Vector2D object that is perpendicular to the input vector.The vector that is perpendicular to this one
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D.
* @returns A new Vector2D object is being returned.
*/
static perp(vector: Vector2D): Vector2D {
return new Vector2D(-vector.y, vector.x)
}
/**
* The reverse function takes a Vector2D object and returns a new Vector2D object with the negated x and y values.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D, which represents a 2-dimensional vector. It
* has two properties: "x" and "y", which represent the x and y components of the vector, respectively.
* @returns A new Vector2D object with the negated x and y values of the input vector. Returns the vector that is the reverse of this vector
*/
static reverse(vector: Vector2D): Vector2D {
return new Vector2D(-vector.x, -vector.y)
}
/**
* The function takes a Vector2D object as input and returns a new Vector2D object with the absolute values of its x
* and y components.
* @param {Vector2D} vector - The parameter "vector" is of type Vector2D, which represents a 2-dimensional vector. It
* has two properties: "x" and "y", which represent the x and y components of the vector, respectively.
* @returns The method is returning a new Vector2D object with the absolute values of the x and y components of the
* input vector.
*/
static abs(vector: Vector2D): Vector2D {
return new Vector2D(Math.abs(vector.x), Math.abs(vector.y))
}
/**
* The dot function calculates the dot product of two 2D vectors.The dot product of v1 and v2
* @param {Vector2D} vector1 - The parameter `vector1` represents a 2D vector with its x and y components.
* @param {Vector2D} vector2 - The "vector2" parameter is a Vector2D object. It represents a two-dimensional vector
* with an x and y component.
* @returns The dot product of the two input vectors.
*/
static dot(vector1: Vector2D, vector2: Vector2D): number {
return (vector1.x * vector2.x) + (vector1.y * vector2.y)
}
// /**
// * Transform vectors based on the current tranformation matrices: translation, rotation and scale
// * @param vectors The vectors to transform
// */
// static transform(vector: Vector2D, transformation: Matrix2D): Vector2D {
// return Matrix2D.multiplyByVector(transformation, vector)
// }
// /**
// * Transform vectors based on the current tranformation matrices: translation, rotation and scale
// * @param vectors The vectors to transform
// */
// static transformList(vectors: Vector2D[], transformation: Matrix2D): Vector2D[] {
// return vectors.map(vector => Matrix2D.multiplyByVector(transformation, vector))
// }
/**
* The function calculates the distance between two points in a two-dimensional space.
* @param {Vector2D} vector1 - The parameter `vector1` represents the first vector in 2D space, while `vector2`
* represents the second vector. Each vector has an `x` and `y` component, which represent their respective coordinates
* in the 2D space.
* @param {Vector2D} vector2 - The `vector2` parameter represents the second vector in the calculation of distance. It
* is an instance of the `Vector2D` class, which typically has properties `x` and `y` representing the coordinates of
* the vector in a 2D space.
* @returns The distance between vector1 and vector2.
*/
static distance(vector1: Vector2D, vector2: Vector2D): number {
const ySeparation = vector2.y - vector1.y
const xSeparation = vector2.x - vector1.x
return Math.sqrt((ySeparation * ySeparation) + (xSeparation * xSeparation))
}
/**
* The function calculates the squared distance between two 2D vectors.
* @param {Vector2D} vector1 - The parameter `vector1` represents the first vector, which is an instance of the
* `Vector2D` class. It contains the x and y coordinates of the vector.
* @param {Vector2D} vector2 - The `vector2` parameter represents the second vector in a two-dimensional space. It has
* properties `x` and `y` which represent the coordinates of the vector.
* @returns the square of the distance between the two input vectors.
*/
static distanceSq(vector1: Vector2D, vector2: Vector2D): number {
const ySeparation = vector2.y - vector1.y
const xSeparation = vector2.x - vector1.x
return (ySeparation * ySeparation) + (xSeparation * xSeparation)
}
/**
* The sign function determines the sign of the cross product between two 2D vectors.
* (assuming the Y axis is pointing down, X axis to right like a Window app)
* @param {Vector2D} vector1 - The parameter `vector1` is of type `Vector2D`, which represents a 2-dimensional vector.
* It likely has properties `x` and `y` representing the x and y components of the vector, respectively.
* @param {Vector2D} vector2 - The above code defines a function called "sign" that takes two parameters: vector1 and
* vector2. Both vector1 and vector2 are of type Vector2D.
* @returns either -1 or 1. Returns positive if v2 is clockwise of this vector, negative if counterclockwise
*/
static sign(vector1: Vector2D, vector2: Vector2D): number {
if (vector1.y * vector2.x > vector1.x * vector2.y) {
return -1
}
return 1
}
/**
* The function calculates the angle between a given vector and the negative y-axis.
* @param {Vector2D} vector - The "vector" parameter is an instance of the Vector2D class, which represents a
* 2-dimensional vector. It has two properties: "x" and "y", which represent the x and y components of the vector,
* respectively.
* @returns the angle between the given vector and the vector (0, -1) in radians.Returns the angle between origin and the given vector in radians
*/
static angle(vector: Vector2D): number {
const origin = new Vector2D(0, -1)
const radian = Math.acos(Vector2D.dot(vector, origin) / (vector.length * origin.length))
return Vector2D.sign(vector, origin) === 1 ? ((Math.PI * 2) - radian) : radian
}
/**
* The function "random" generates a random Vector2D object with x and y values within the specified range.
* @param {number} maxX - The maxX parameter represents the maximum value for the x-coordinate of the random vector.
* @param {number} maxY - The `maxY` parameter represents the maximum value for the y-coordinate of the generated
* random vector.
* @returns a new instance of the Vector2D class with random x and y values.
*/
static random(maxX: number, maxY: number): Vector2D {
const randX = Math.floor(Math.random() * maxX - (maxX / 2))
const randY = Math.floor(Math.random() * maxY - (maxY / 2))
return new Vector2D(randX, randY)
}
/**
* The function sets the values of x and y to zero.
*/
zero(): void {
this.x = 0
this.y = 0
}
/**
* The function sets the values of x and y to zero.
*/
zero(): void {
this.x = 0
this.y = 0
}
}
export default Vector2D
export default Vector2D

View file

@ -9,40 +9,40 @@ import {PriorityQueue} from './priority-queue';
import type {PriorityQueueOptions, SpecifyOptional} from '../../types';
export class MaxPriorityQueue<T = number> extends PriorityQueue<T> {
constructor(options?: Omit<PriorityQueueOptions<number>, 'comparator'>)
constructor(options: PriorityQueueOptions<T>)
/**
* The constructor initializes a priority queue with an optional comparator function.
* @param [options] - The `options` parameter is an optional object that can contain various properties to configure
* the priority queue.
*/
constructor(options?: SpecifyOptional<PriorityQueueOptions<T>, 'comparator'>) {
super({
...options,
comparator: options?.comparator ? options.comparator : (a: T, b: T) => {
const aKey = a as unknown as number, bKey = b as unknown as number;
return bKey - aKey;
}
});
}
constructor(options?: Omit<PriorityQueueOptions<number>, 'comparator'>)
constructor(options: PriorityQueueOptions<T>)
/**
* The constructor initializes a priority queue with an optional comparator function.
* @param [options] - The `options` parameter is an optional object that can contain various properties to configure
* the priority queue.
*/
constructor(options?: SpecifyOptional<PriorityQueueOptions<T>, 'comparator'>) {
super({
...options,
comparator: options?.comparator ? options.comparator : (a: T, b: T) => {
const aKey = a as unknown as number, bKey = b as unknown as number;
return bKey - aKey;
}
});
}
static override heapify<T extends number>(options?: Omit<PriorityQueueOptions<T>, 'comparator'>): MaxPriorityQueue<T>
static override heapify<T>(options: PriorityQueueOptions<T>): MaxPriorityQueue<T>
/**
* The function `heapify` creates a max priority queue from the given options and returns it.
* @param options - The `options` parameter is an object that contains configuration options for creating a priority
* queue. It can have the following properties:
* @returns a MaxPriorityQueue object.
*/
static override heapify<T>(options: PriorityQueueOptions<T>): MaxPriorityQueue<T> {
const maxPQ = new MaxPriorityQueue<T>({
...options,
comparator: options?.comparator ? options.comparator : (a: T, b: T) => {
const aKey = a as unknown as number, bKey = b as unknown as number;
return bKey - aKey;
}
});
maxPQ._fix();
return maxPQ;
}
}
static override heapify<T extends number>(options?: Omit<PriorityQueueOptions<T>, 'comparator'>): MaxPriorityQueue<T>
static override heapify<T>(options: PriorityQueueOptions<T>): MaxPriorityQueue<T>
/**
* The function `heapify` creates a max priority queue from the given options and returns it.
* @param options - The `options` parameter is an object that contains configuration options for creating a priority
* queue. It can have the following properties:
* @returns a MaxPriorityQueue object.
*/
static override heapify<T>(options: PriorityQueueOptions<T>): MaxPriorityQueue<T> {
const maxPQ = new MaxPriorityQueue<T>({
...options,
comparator: options?.comparator ? options.comparator : (a: T, b: T) => {
const aKey = a as unknown as number, bKey = b as unknown as number;
return bKey - aKey;
}
});
maxPQ._fix();
return maxPQ;
}
}

View file

@ -9,41 +9,41 @@ import {PriorityQueue} from './priority-queue';
import type {PriorityQueueOptions, SpecifyOptional} from '../../types';
export class MinPriorityQueue<T = number> extends PriorityQueue<T> {
constructor(options?: Omit<PriorityQueueOptions<number>, 'comparator'>)
constructor(options: PriorityQueueOptions<T>)
/**
* The constructor initializes a priority queue with an optional comparator function.
* @param [options] - The `options` parameter is an optional object that can contain various configuration options for
* the `PriorityQueue` constructor.
*/
constructor(options?: SpecifyOptional<PriorityQueueOptions<T>, 'comparator'>) {
super({
...options,
comparator: options?.comparator ? options.comparator : (a: T, b: T) => {
const aKey = a as unknown as number, bKey = b as unknown as number;
return aKey - bKey;
}
});
}
constructor(options?: Omit<PriorityQueueOptions<number>, 'comparator'>)
constructor(options: PriorityQueueOptions<T>)
/**
* The constructor initializes a priority queue with an optional comparator function.
* @param [options] - The `options` parameter is an optional object that can contain various configuration options for
* the `PriorityQueue` constructor.
*/
constructor(options?: SpecifyOptional<PriorityQueueOptions<T>, 'comparator'>) {
super({
...options,
comparator: options?.comparator ? options.comparator : (a: T, b: T) => {
const aKey = a as unknown as number, bKey = b as unknown as number;
return aKey - bKey;
}
});
}
static override heapify<T extends number>(options?: Omit<PriorityQueueOptions<T>, 'comparator'>): MinPriorityQueue<T>
static override heapify<T>(options: PriorityQueueOptions<T>): MinPriorityQueue<T>
/**
* The function `heapify` creates a new MinPriorityQueue instance and sets the comparator function based on the options
* provided, and then fixes the heap structure of the queue.
* @param options - The `options` parameter is an object that contains configuration options for creating a priority
* queue. It can have the following properties:
* @returns a MinPriorityQueue object.
*/
static override heapify<T>(options: PriorityQueueOptions<T>): MinPriorityQueue<T> {
const minPQ = new MinPriorityQueue<T>({
...options,
comparator: options?.comparator ? options.comparator : (a: T, b: T) => {
const aKey = a as unknown as number, bKey = b as unknown as number;
return aKey - bKey;
}
});
minPQ._fix();
return minPQ;
}
}
static override heapify<T extends number>(options?: Omit<PriorityQueueOptions<T>, 'comparator'>): MinPriorityQueue<T>
static override heapify<T>(options: PriorityQueueOptions<T>): MinPriorityQueue<T>
/**
* The function `heapify` creates a new MinPriorityQueue instance and sets the comparator function based on the options
* provided, and then fixes the heap structure of the queue.
* @param options - The `options` parameter is an object that contains configuration options for creating a priority
* queue. It can have the following properties:
* @returns a MinPriorityQueue object.
*/
static override heapify<T>(options: PriorityQueueOptions<T>): MinPriorityQueue<T> {
const minPQ = new MinPriorityQueue<T>({
...options,
comparator: options?.comparator ? options.comparator : (a: T, b: T) => {
const aKey = a as unknown as number, bKey = b as unknown as number;
return aKey - bKey;
}
});
minPQ._fix();
return minPQ;
}
}

View file

@ -8,347 +8,347 @@
import type {PriorityQueueComparator, PriorityQueueDFSOrderPattern, PriorityQueueOptions} from '../../types';
export class PriorityQueue<T = number> {
/**
* The constructor initializes a priority queue with the given options, including an array of nodes and a comparator
* function.
* @param options - The `options` parameter is an object that contains the following properties:
*/
constructor(options: PriorityQueueOptions<T>) {
const {nodes, comparator, isFix = true} = options;
this._comparator = comparator;
/**
* The constructor initializes a priority queue with the given options, including an array of nodes and a comparator
* function.
* @param options - The `options` parameter is an object that contains the following properties:
*/
constructor(options: PriorityQueueOptions<T>) {
const {nodes, comparator, isFix = true} = options;
this._comparator = comparator;
if (nodes && Array.isArray(nodes) && nodes.length > 0) {
// TODO support distinct
this._nodes = [...nodes];
isFix && this._fix();
}
if (nodes && Array.isArray(nodes) && nodes.length > 0) {
// TODO support distinct
this._nodes = [...nodes];
isFix && this._fix();
}
}
protected _nodes: T[] = [];
protected _nodes: T[] = [];
get nodes(): T[] {
return this._nodes;
get nodes(): T[] {
return this._nodes;
}
get size(): number {
return this.nodes.length;
}
/**
* The `heapify` function creates a new PriorityQueue instance and fixes the heap property.
* @param options - The "options" parameter is an object that contains the configuration options for the PriorityQueue.
* It can include properties such as "comparator" which specifies the comparison function used to order the elements in
* the priority queue, and "initialValues" which is an array of initial values to be added to the priority
* @returns a new instance of the PriorityQueue class after performing the heapify operation on it.
*/
static heapify<T>(options: PriorityQueueOptions<T>) {
const heap = new PriorityQueue(options);
heap._fix();
return heap;
}
/**
* The function checks if a priority queue is valid by creating a new priority queue with a fix option and then calling
* the isValid method.
* @param options - An object containing options for creating a priority queue. The options object should have the
* following properties:
* @returns the result of calling the `isValid()` method on a new instance of the `PriorityQueue` class.
*/
static isPriorityQueueified<T>(options: Omit<PriorityQueueOptions<T>, 'isFix'>) {
return new PriorityQueue({...options, isFix: false}).isValid();
}
/**
* Starting from TypeScript version 5.0 and onwards, the use of distinct access modifiers for Getters and Setters is not permitted. As an alternative, to ensure compatibility, it is necessary to adopt a Java-style approach for Setters (using the same name as the property) while utilizing separate method names for Getters.
*/
getNodes(): T[] {
return this._nodes;
}
/**
* The "add" function adds a node to the heap and ensures that the heap property is maintained.
* @param {T} node - The parameter "node" is of type T, which means it can be any data type. It represents the node
* that needs to be added to the heap.
*/
add(node: T) {
this.nodes.push(node);
this._heapifyUp(this.size - 1);
}
/**
* The "has" function checks if a given node is present in the list of nodes.
* @param {T} node - The parameter `node` is of type `T`, which means it can be any type. It represents the node that
* we want to check if it exists in the `nodes` array.
* @returns a boolean value indicating whether the given node is included in the array of nodes.
*/
has(node: T): boolean {
return this.nodes.includes(node);
}
/**
* The `peek` function returns the first element of the `nodes` array if it exists, otherwise it returns `null`.
* @returns The `peek()` function is returning the first element (`T`) of the `nodes` array if the `size` is not zero.
* Otherwise, it returns `null`.
*/
peek(): T | null {
return this.size ? this.nodes[0] : null;
}
/**
* The `poll` function removes and returns the top element from a heap data structure.
* @returns The `poll()` method returns a value of type `T` or `null`.
*/
poll(): T | null {
let res: T | null = null;
if (this.size > 1) {
this._swap(0, this.nodes.length - 1);
res = this.nodes.pop() ?? null;
this._heapifyDown(0);
} else if (this.size === 1) {
res = this.nodes.pop() ?? null;
}
return res;
}
get size(): number {
return this.nodes.length;
/**
* The `leaf` function returns the last element in the `nodes` array or `null` if the array is empty.
* @returns The method `leaf()` is returning the last element (`T`) in the `nodes` array if it exists. If the array is
* empty or the last element is `null`, then it returns `null`.
*/
leaf(): T | null {
return this.nodes[this.size - 1] ?? null;
}
/**
* The function checks if the size of an object is equal to zero and returns a boolean value indicating whether the
* object is empty or not.
* @returns The method `isEmpty()` is returning a boolean value indicating whether the size of the object is equal to
* 0.
*/
isEmpty() {
return this.size === 0;
}
/**
* The clear function clears the nodes array.
*/
clear() {
this._setNodes([]);
}
/**
* The toArray function returns an array containing all the elements in the nodes property.
* @returns An array of type T, which is the elements of the nodes property.
*/
toArray(): T[] {
return [...this.nodes];
}
/**
* The `clone` function returns a new instance of the `PriorityQueue` class with the same nodes and comparator as the
* original instance.
* @returns The `clone()` method is returning a new instance of the `PriorityQueue` class with the same `nodes` and
* `comparator` properties as the original instance.
*/
clone(): PriorityQueue<T> {
return new PriorityQueue<T>({nodes: this.nodes, comparator: this._comparator});
}
// --- start additional methods ---
/**
* The `isValid` function recursively checks if a binary tree satisfies a certain condition.
* @returns The function `isValid()` returns a boolean value.
*/
isValid(): boolean {
for (let i = 0; i < this.nodes.length; i++) {
const leftChildIndex = this._getLeft(i);
const rightChildIndex = this._getRight(i);
if (this._isValidIndex(leftChildIndex) && !this._compare(leftChildIndex, i)) {
return false;
}
if (this._isValidIndex(rightChildIndex) && !this._compare(rightChildIndex, i)) {
return false;
}
}
return true;
}
/**
* The `heapify` function creates a new PriorityQueue instance and fixes the heap property.
* @param options - The "options" parameter is an object that contains the configuration options for the PriorityQueue.
* It can include properties such as "comparator" which specifies the comparison function used to order the elements in
* the priority queue, and "initialValues" which is an array of initial values to be added to the priority
* @returns a new instance of the PriorityQueue class after performing the heapify operation on it.
*/
static heapify<T>(options: PriorityQueueOptions<T>) {
const heap = new PriorityQueue(options);
heap._fix();
return heap;
/**
* O(n log n), In scenarios with smaller data sizes, heap sort is generally expected to be slower than QuickSort or MergeSort.
*/
/**
* The function sorts the elements in a data structure and returns them in an array.
* Plan to support sorting of duplicate elements.
* @returns The `sort()` method is returning an array of type `T[]`.
*/
sort(): T[] {
const visitedNode: T[] = [];
while (this.size !== 0) {
const top = this.poll();
if (top) visitedNode.push(top);
}
return visitedNode;
}
/**
* The function checks if a priority queue is valid by creating a new priority queue with a fix option and then calling
* the isValid method.
* @param options - An object containing options for creating a priority queue. The options object should have the
* following properties:
* @returns the result of calling the `isValid()` method on a new instance of the `PriorityQueue` class.
*/
static isPriorityQueueified<T>(options: Omit<PriorityQueueOptions<T>, 'isFix'>) {
return new PriorityQueue({...options, isFix: false}).isValid();
}
/**
* The DFS function performs a depth-first search traversal on a binary tree and returns an array of visited nodes
* based on the specified traversal order.
* @param {PriorityQueueDFSOrderPattern} dfsMode - The dfsMode parameter is a string that specifies the order in which
* the nodes should be visited during the Depth-First Search (DFS) traversal. It can have one of the following values:
* @returns an array of type `(T | null)[]`.
*/
DFS(dfsMode: PriorityQueueDFSOrderPattern): (T | null)[] {
const visitedNode: (T | null)[] = [];
/**
* Starting from TypeScript version 5.0 and onwards, the use of distinct access modifiers for Getters and Setters is not permitted. As an alternative, to ensure compatibility, it is necessary to adopt a Java-style approach for Setters (using the same name as the property) while utilizing separate method names for Getters.
*/
getNodes(): T[] {
return this._nodes;
}
/**
* The "add" function adds a node to the heap and ensures that the heap property is maintained.
* @param {T} node - The parameter "node" is of type T, which means it can be any data type. It represents the node
* that needs to be added to the heap.
*/
add(node: T) {
this.nodes.push(node);
this._heapifyUp(this.size - 1);
}
/**
* The "has" function checks if a given node is present in the list of nodes.
* @param {T} node - The parameter `node` is of type `T`, which means it can be any type. It represents the node that
* we want to check if it exists in the `nodes` array.
* @returns a boolean value indicating whether the given node is included in the array of nodes.
*/
has(node: T): boolean {
return this.nodes.includes(node);
}
/**
* The `peek` function returns the first element of the `nodes` array if it exists, otherwise it returns `null`.
* @returns The `peek()` function is returning the first element (`T`) of the `nodes` array if the `size` is not zero.
* Otherwise, it returns `null`.
*/
peek(): T | null {
return this.size ? this.nodes[0] : null;
}
/**
* The `poll` function removes and returns the top element from a heap data structure.
* @returns The `poll()` method returns a value of type `T` or `null`.
*/
poll(): T | null {
let res: T | null = null;
if (this.size > 1) {
this._swap(0, this.nodes.length - 1);
res = this.nodes.pop() ?? null;
this._heapifyDown(0);
} else if (this.size === 1) {
res = this.nodes.pop() ?? null;
}
return res;
}
/**
* The `leaf` function returns the last element in the `nodes` array or `null` if the array is empty.
* @returns The method `leaf()` is returning the last element (`T`) in the `nodes` array if it exists. If the array is
* empty or the last element is `null`, then it returns `null`.
*/
leaf(): T | null {
return this.nodes[this.size - 1] ?? null;
}
/**
* The function checks if the size of an object is equal to zero and returns a boolean value indicating whether the
* object is empty or not.
* @returns The method `isEmpty()` is returning a boolean value indicating whether the size of the object is equal to
* 0.
*/
isEmpty() {
return this.size === 0;
}
/**
* The clear function clears the nodes array.
*/
clear() {
this._setNodes([]);
}
/**
* The toArray function returns an array containing all the elements in the nodes property.
* @returns An array of type T, which is the elements of the nodes property.
*/
toArray(): T[] {
return [...this.nodes];
}
/**
* The `clone` function returns a new instance of the `PriorityQueue` class with the same nodes and comparator as the
* original instance.
* @returns The `clone()` method is returning a new instance of the `PriorityQueue` class with the same `nodes` and
* `comparator` properties as the original instance.
*/
clone(): PriorityQueue<T> {
return new PriorityQueue<T>({nodes: this.nodes, comparator: this._comparator});
}
// --- start additional methods ---
/**
* The `isValid` function recursively checks if a binary tree satisfies a certain condition.
* @returns The function `isValid()` returns a boolean value.
*/
isValid(): boolean {
for (let i = 0; i < this.nodes.length; i++) {
const leftChildIndex = this._getLeft(i);
const rightChildIndex = this._getRight(i);
if (this._isValidIndex(leftChildIndex) && !this._compare(leftChildIndex, i)) {
return false;
}
if (this._isValidIndex(rightChildIndex) && !this._compare(rightChildIndex, i)) {
return false;
}
}
return true;
}
/**
* O(n log n), In scenarios with smaller data sizes, heap sort is generally expected to be slower than QuickSort or MergeSort.
*/
/**
* The function sorts the elements in a data structure and returns them in an array.
* Plan to support sorting of duplicate elements.
* @returns The `sort()` method is returning an array of type `T[]`.
*/
sort(): T[] {
const visitedNode: T[] = [];
while (this.size !== 0) {
const top = this.poll();
if (top) visitedNode.push(top);
}
return visitedNode;
}
/**
* The DFS function performs a depth-first search traversal on a binary tree and returns an array of visited nodes
* based on the specified traversal order.
* @param {PriorityQueueDFSOrderPattern} dfsMode - The dfsMode parameter is a string that specifies the order in which
* the nodes should be visited during the Depth-First Search (DFS) traversal. It can have one of the following values:
* @returns an array of type `(T | null)[]`.
*/
DFS(dfsMode: PriorityQueueDFSOrderPattern): (T | null)[] {
const visitedNode: (T | null)[] = [];
const traverse = (cur: number) => {
const leftChildIndex = this._getLeft(cur);
const rightChildIndex = this._getRight(cur);
switch (dfsMode) {
case 'in':
this._isValidIndex(leftChildIndex) && traverse(leftChildIndex);
visitedNode.push(this.nodes[cur] ?? null);
this._isValidIndex(rightChildIndex) && traverse(rightChildIndex);
break;
case 'pre':
visitedNode.push(this.nodes[cur] ?? null);
this._isValidIndex(leftChildIndex) && traverse(leftChildIndex);
this._isValidIndex(rightChildIndex) && traverse(rightChildIndex);
break;
case 'post':
this._isValidIndex(leftChildIndex) && traverse(leftChildIndex);
this._isValidIndex(rightChildIndex) && traverse(rightChildIndex);
visitedNode.push(this.nodes[cur] ?? null);
break;
}
};
this._isValidIndex(0) && traverse(0);
return visitedNode;
}
protected _setNodes(value: T[]) {
this._nodes = value;
}
protected readonly _comparator: PriorityQueueComparator<T> = (a: T, b: T) => {
const aKey = a as unknown as number, bKey = b as unknown as number;
return aKey - bKey;
const traverse = (cur: number) => {
const leftChildIndex = this._getLeft(cur);
const rightChildIndex = this._getRight(cur);
switch (dfsMode) {
case 'in':
this._isValidIndex(leftChildIndex) && traverse(leftChildIndex);
visitedNode.push(this.nodes[cur] ?? null);
this._isValidIndex(rightChildIndex) && traverse(rightChildIndex);
break;
case 'pre':
visitedNode.push(this.nodes[cur] ?? null);
this._isValidIndex(leftChildIndex) && traverse(leftChildIndex);
this._isValidIndex(rightChildIndex) && traverse(rightChildIndex);
break;
case 'post':
this._isValidIndex(leftChildIndex) && traverse(leftChildIndex);
this._isValidIndex(rightChildIndex) && traverse(rightChildIndex);
visitedNode.push(this.nodes[cur] ?? null);
break;
}
};
/**
* The function compares two numbers using a custom comparator function.
* @param {number} a - The parameter "a" is a number that represents the index of a node in an array.
* @param {number} b - The parameter "b" is a number.
* @returns the result of the comparison between the elements at indices `a` and `b` in the `nodes` array. The
* comparison is done using the `_comparator` function, and if the result is greater than 0, `true` is returned,
* indicating that the element at index `a` is greater than the element at index `b`.
*/
protected _compare(a: number, b: number) {
return this._comparator(this.nodes[a], this.nodes[b]) > 0;
this._isValidIndex(0) && traverse(0);
return visitedNode;
}
protected _setNodes(value: T[]) {
this._nodes = value;
}
protected readonly _comparator: PriorityQueueComparator<T> = (a: T, b: T) => {
const aKey = a as unknown as number, bKey = b as unknown as number;
return aKey - bKey;
};
/**
* The function compares two numbers using a custom comparator function.
* @param {number} a - The parameter "a" is a number that represents the index of a node in an array.
* @param {number} b - The parameter "b" is a number.
* @returns the result of the comparison between the elements at indices `a` and `b` in the `nodes` array. The
* comparison is done using the `_comparator` function, and if the result is greater than 0, `true` is returned,
* indicating that the element at index `a` is greater than the element at index `b`.
*/
protected _compare(a: number, b: number) {
return this._comparator(this.nodes[a], this.nodes[b]) > 0;
}
/**
* The function swaps two elements in an array.
* @param {number} a - The parameter "a" is a number that represents the index of an element in an array.
* @param {number} b - The parameter "b" is a number.
*/
protected _swap(a: number, b: number) {
const temp = this.nodes[a];
this.nodes[a] = this.nodes[b];
this.nodes[b] = temp;
}
/**
* The function checks if a given index is valid within an array.
* @param {number} index - The parameter "index" is of type number and represents the index value that needs to be
* checked for validity.
* @returns A boolean value indicating whether the given index is valid or not.
*/
protected _isValidIndex(index: number): boolean {
return index > -1 && index < this.nodes.length;
}
/**
* The function returns the index of the parent node given the index of a child node in a binary tree.
* @param {number} child - The "child" parameter is a number representing the index of a child node in a binary tree.
* @returns the parent of the given child node.
*/
protected _getParent(child: number): number {
return Math.floor((child - 1) / 2);
}
/**
* The function returns the index of the left child node in a binary tree given the index of its parent node.
* @param {number} parent - The parameter "parent" is a number that represents the index of a node in a binary tree.
* @returns the left child of a given parent node in a binary tree.
*/
protected _getLeft(parent: number): number {
return (2 * parent) + 1;
}
/**
* The function returns the index of the right child node in a binary tree given the index of its parent node.
* @param {number} parent - The parameter "parent" is a number that represents the index of a node in a binary tree.
* @returns the right child of a given parent node in a binary tree.
*/
protected _getRight(parent: number): number {
return (2 * parent) + 2;
}
/**
* The function returns the index of the smallest child node of a given parent node.
* @param {number} parent - The parent parameter is a number that represents the index of the parent node in a binary
* tree.
* @returns the minimum value between the parent node and its left and right child nodes.
*/
protected _getComparedChild(parent: number) {
let min = parent;
const left = this._getLeft(parent), right = this._getRight(parent);
if (left < this.size && this._compare(min, left)) {
min = left;
}
/**
* The function swaps two elements in an array.
* @param {number} a - The parameter "a" is a number that represents the index of an element in an array.
* @param {number} b - The parameter "b" is a number.
*/
protected _swap(a: number, b: number) {
const temp = this.nodes[a];
this.nodes[a] = this.nodes[b];
this.nodes[b] = temp;
if (right < this.size && this._compare(min, right)) {
min = right;
}
return min;
}
/**
* The function checks if a given index is valid within an array.
* @param {number} index - The parameter "index" is of type number and represents the index value that needs to be
* checked for validity.
* @returns A boolean value indicating whether the given index is valid or not.
*/
protected _isValidIndex(index: number): boolean {
return index > -1 && index < this.nodes.length;
/**
* The function `_heapifyUp` is used to maintain the heap property by moving an element up the heap until it is in the
* correct position.
* @param {number} start - The start parameter is the index of the element that needs to be moved up in the heap.
*/
protected _heapifyUp(start: number) {
while (start > 0 && this._compare(this._getParent(start), start)) {
const parent = this._getParent(start);
this._swap(start, parent);
start = parent;
}
}
/**
* The function returns the index of the parent node given the index of a child node in a binary tree.
* @param {number} child - The "child" parameter is a number representing the index of a child node in a binary tree.
* @returns the parent of the given child node.
*/
protected _getParent(child: number): number {
return Math.floor((child - 1) / 2);
/**
* The function performs a heapify operation by comparing and swapping elements in a binary heap.
* @param {number} start - The start parameter is the index of the element in the heap from where the heapifyDown
* operation should start.
*/
protected _heapifyDown(start: number) {
let min = this._getComparedChild(start);
while (this._compare(start, min)) {
this._swap(min, start);
start = min;
min = this._getComparedChild(start);
}
}
/**
* The function returns the index of the left child node in a binary tree given the index of its parent node.
* @param {number} parent - The parameter "parent" is a number that represents the index of a node in a binary tree.
* @returns the left child of a given parent node in a binary tree.
*/
protected _getLeft(parent: number): number {
return (2 * parent) + 1;
}
/**
* The _fix function performs a heapify operation on the elements of the heap starting from the middle and moving
* towards the root.
*/
protected _fix() {
for (let i = Math.floor(this.size / 2); i > -1; i--) this._heapifyDown(i);
}
/**
* The function returns the index of the right child node in a binary tree given the index of its parent node.
* @param {number} parent - The parameter "parent" is a number that represents the index of a node in a binary tree.
* @returns the right child of a given parent node in a binary tree.
*/
protected _getRight(parent: number): number {
return (2 * parent) + 2;
}
/**
* The function returns the index of the smallest child node of a given parent node.
* @param {number} parent - The parent parameter is a number that represents the index of the parent node in a binary
* tree.
* @returns the minimum value between the parent node and its left and right child nodes.
*/
protected _getComparedChild(parent: number) {
let min = parent;
const left = this._getLeft(parent), right = this._getRight(parent);
if (left < this.size && this._compare(min, left)) {
min = left;
}
if (right < this.size && this._compare(min, right)) {
min = right;
}
return min;
}
/**
* The function `_heapifyUp` is used to maintain the heap property by moving an element up the heap until it is in the
* correct position.
* @param {number} start - The start parameter is the index of the element that needs to be moved up in the heap.
*/
protected _heapifyUp(start: number) {
while (start > 0 && this._compare(this._getParent(start), start)) {
const parent = this._getParent(start);
this._swap(start, parent);
start = parent;
}
}
/**
* The function performs a heapify operation by comparing and swapping elements in a binary heap.
* @param {number} start - The start parameter is the index of the element in the heap from where the heapifyDown
* operation should start.
*/
protected _heapifyDown(start: number) {
let min = this._getComparedChild(start);
while (this._compare(start, min)) {
this._swap(min, start);
start = min;
min = this._getComparedChild(start);
}
}
/**
* The _fix function performs a heapify operation on the elements of the heap starting from the middle and moving
* towards the root.
*/
protected _fix() {
for (let i = Math.floor(this.size / 2); i > -1; i--) this._heapifyDown(i);
}
// --- end additional methods ---
}
// --- end additional methods ---
}

View file

@ -17,235 +17,235 @@ export class Deque<T> extends DoublyLinkedList<T> {
// O(n) time complexity of adding at the beginning and the end
// todo tested slowest one
export class ObjectDeque<T = number> {
constructor(capacity?: number) {
if (capacity !== undefined) this._capacity = capacity;
constructor(capacity?: number) {
if (capacity !== undefined) this._capacity = capacity;
}
private _nodes: { [key: number]: T } = {};
get nodes(): { [p: number]: T } {
return this._nodes;
}
private _capacity = Number.MAX_SAFE_INTEGER;
get capacity(): number {
return this._capacity;
}
set capacity(value: number) {
this._capacity = value;
}
private _first: number = -1;
get first(): number {
return this._first;
}
set first(value: number) {
this._first = value;
}
private _last: number = -1;
get last(): number {
return this._last;
}
set last(value: number) {
this._last = value;
}
private _size: number = 0;
get size(): number {
return this._size;
}
addFirst(value: T) {
if (this._size === 0) {
const mid = Math.floor(this._capacity / 2);
this._first = mid;
this._last = mid;
} else {
this._first--;
}
this._nodes[this._first] = value;
this._size++;
}
private _nodes: { [key: number]: T } = {};
get nodes(): { [p: number]: T } {
return this._nodes;
addLast(value: T) {
if (this._size === 0) {
const mid = Math.floor(this._capacity / 2);
this._first = mid;
this._last = mid;
} else {
this._last++;
}
this._nodes[this._last] = value;
this._size++;
}
private _capacity = Number.MAX_SAFE_INTEGER;
pollFirst() {
if (!this._size) return;
const value = this.peekFirst();
delete this._nodes[this._first];
this._first++;
this._size--;
return value;
}
get capacity(): number {
return this._capacity;
}
peekFirst() {
if (this._size) return this._nodes[this._first];
}
set capacity(value: number) {
this._capacity = value;
}
pollLast() {
if (!this._size) return;
const value = this.peekLast();
delete this._nodes[this._last];
this._last--;
this._size--;
private _first: number = -1;
return value;
}
get first(): number {
return this._first;
}
peekLast() {
if (this._size) return this._nodes[this._last];
}
set first(value: number) {
this._first = value;
}
get(index: number) {
return this._nodes[this._first + index] || null;
}
private _last: number = -1;
isEmpty() {
return this._size <= 0;
}
get last(): number {
return this._last;
}
protected _seNodes(value: { [p: number]: T }) {
this._nodes = value;
}
set last(value: number) {
this._last = value;
}
private _size: number = 0;
get size(): number {
return this._size;
}
addFirst(value: T) {
if (this._size === 0) {
const mid = Math.floor(this._capacity / 2);
this._first = mid;
this._last = mid;
} else {
this._first--;
}
this._nodes[this._first] = value;
this._size++;
}
addLast(value: T) {
if (this._size === 0) {
const mid = Math.floor(this._capacity / 2);
this._first = mid;
this._last = mid;
} else {
this._last++;
}
this._nodes[this._last] = value;
this._size++;
}
pollFirst() {
if (!this._size) return;
const value = this.peekFirst();
delete this._nodes[this._first];
this._first++;
this._size--;
return value;
}
peekFirst() {
if (this._size) return this._nodes[this._first];
}
pollLast() {
if (!this._size) return;
const value = this.peekLast();
delete this._nodes[this._last];
this._last--;
this._size--;
return value;
}
peekLast() {
if (this._size) return this._nodes[this._last];
}
get(index: number) {
return this._nodes[this._first + index] || null;
}
isEmpty() {
return this._size <= 0;
}
protected _seNodes(value: { [p: number]: T }) {
this._nodes = value;
}
protected _setSize(value: number) {
this._size = value;
}
protected _setSize(value: number) {
this._size = value;
}
}
// O(1) time complexity of obtaining the value
// O(n) time complexity of adding at the beginning and the end
export class ArrayDeque<T> {
protected _nodes: T[] = [];
protected _nodes: T[] = [];
get size() {
return this._nodes.length;
}
get size() {
return this._nodes.length;
}
/**
* The function "addLast" adds a value to the end of an array.
* @param {T} value - The value parameter represents the value that you want to add to the end of the array.
* @returns The return value is the new length of the array after the value has been added.
*/
addLast(value: T) {
return this._nodes.push(value);
}
/**
* The function "addLast" adds a value to the end of an array.
* @param {T} value - The value parameter represents the value that you want to add to the end of the array.
* @returns The return value is the new length of the array after the value has been added.
*/
addLast(value: T) {
return this._nodes.push(value);
}
/**
* The function "pollLast" returns and removes the last element from an array, or returns null if the array is empty.
* @returns The method `pollLast()` returns the last element of the `_nodes` array, or `null` if the array is empty.
*/
pollLast(): T | null {
return this._nodes.pop() ?? null;
}
/**
* The function "pollLast" returns and removes the last element from an array, or returns null if the array is empty.
* @returns The method `pollLast()` returns the last element of the `_nodes` array, or `null` if the array is empty.
*/
pollLast(): T | null {
return this._nodes.pop() ?? null;
}
/**
* The `pollFirst` function removes and returns the first element from an array, or returns null if the array is empty.
* @returns The `pollFirst()` function returns the first element of the `_nodes` array, or `null` if the array is
* empty.
*/
pollFirst(): T | null {
return this._nodes.shift() ?? null;
}
/**
* The `pollFirst` function removes and returns the first element from an array, or returns null if the array is empty.
* @returns The `pollFirst()` function returns the first element of the `_nodes` array, or `null` if the array is
* empty.
*/
pollFirst(): T | null {
return this._nodes.shift() ?? null;
}
/**
* The function "addFirst" adds a value to the beginning of an array.
* @param {T} value - The value parameter represents the value that you want to add to the beginning of the array.
* @returns The return value of the `addFirst` function is the new length of the array `_nodes` after adding the
* `value` at the beginning.
*/
addFirst(value: T) {
return this._nodes.unshift(value);
}
/**
* The function "addFirst" adds a value to the beginning of an array.
* @param {T} value - The value parameter represents the value that you want to add to the beginning of the array.
* @returns The return value of the `addFirst` function is the new length of the array `_nodes` after adding the
* `value` at the beginning.
*/
addFirst(value: T) {
return this._nodes.unshift(value);
}
/**
* The `peekFirst` function returns the first element of an array or null if the array is empty.
* @returns The function `peekFirst()` is returning the first element (`T`) of the `_nodes` array. If the array is
* empty, it will return `null`.
*/
peekFirst(): T | null {
return this._nodes[0] ?? null;
}
/**
* The `peekFirst` function returns the first element of an array or null if the array is empty.
* @returns The function `peekFirst()` is returning the first element (`T`) of the `_nodes` array. If the array is
* empty, it will return `null`.
*/
peekFirst(): T | null {
return this._nodes[0] ?? null;
}
/**
* The `peekLast` function returns the last element of an array or null if the array is empty.
* @returns The method `peekLast()` returns the last element of the `_nodes` array, or `null` if the array is empty.
*/
peekLast(): T | null {
return this._nodes[this._nodes.length - 1] ?? null;
}
/**
* The `peekLast` function returns the last element of an array or null if the array is empty.
* @returns The method `peekLast()` returns the last element of the `_nodes` array, or `null` if the array is empty.
*/
peekLast(): T | null {
return this._nodes[this._nodes.length - 1] ?? null;
}
/**
* The get function returns the element at the specified index in an array, or null if the index is out of bounds.
* @param {number} index - The index parameter is a number that represents the position of the element you want to
* retrieve from the array.
* @returns The method is returning the element at the specified index in the `_nodes` array. If the element exists, it
* will be returned. If the element does not exist (i.e., the index is out of bounds), `null` will be returned.
*/
get(index: number): T | null {
return this._nodes[index] ?? null;
}
/**
* The get function returns the element at the specified index in an array, or null if the index is out of bounds.
* @param {number} index - The index parameter is a number that represents the position of the element you want to
* retrieve from the array.
* @returns The method is returning the element at the specified index in the `_nodes` array. If the element exists, it
* will be returned. If the element does not exist (i.e., the index is out of bounds), `null` will be returned.
*/
get(index: number): T | null {
return this._nodes[index] ?? null;
}
/**
* The set function assigns a value to a specific index in an array.
* @param {number} index - The index parameter is a number that represents the position of the element in the array
* that you want to set a new value for.
* @param {T} value - The value parameter represents the new value that you want to set at the specified index in the
* _nodes array.
* @returns The value that is being set at the specified index in the `_nodes` array.
*/
set(index: number, value: T) {
return this._nodes[index] = value;
}
/**
* The set function assigns a value to a specific index in an array.
* @param {number} index - The index parameter is a number that represents the position of the element in the array
* that you want to set a new value for.
* @param {T} value - The value parameter represents the new value that you want to set at the specified index in the
* _nodes array.
* @returns The value that is being set at the specified index in the `_nodes` array.
*/
set(index: number, value: T) {
return this._nodes[index] = value;
}
/**
* The insert function adds a value at a specified index in an array.
* @param {number} index - The index parameter specifies the position at which the value should be inserted in the
* array. It is a number that represents the index of the array where the value should be inserted. The index starts
* from 0, so the first element of the array has an index of 0, the second element has
* @param {T} value - The value parameter represents the value that you want to insert into the array at the specified
* index.
* @returns The splice method returns an array containing the removed elements, if any. In this case, since no elements
* are being removed, an empty array will be returned.
*/
insert(index: number, value: T) {
return this._nodes.splice(index, 0, value);
}
/**
* The insert function adds a value at a specified index in an array.
* @param {number} index - The index parameter specifies the position at which the value should be inserted in the
* array. It is a number that represents the index of the array where the value should be inserted. The index starts
* from 0, so the first element of the array has an index of 0, the second element has
* @param {T} value - The value parameter represents the value that you want to insert into the array at the specified
* index.
* @returns The splice method returns an array containing the removed elements, if any. In this case, since no elements
* are being removed, an empty array will be returned.
*/
insert(index: number, value: T) {
return this._nodes.splice(index, 0, value);
}
/**
* The remove function removes an element from an array at a specified index.
* @param {number} index - The index parameter specifies the position of the element to be removed from the array. It
* is a number that represents the index of the element to be removed.
* @returns The method is returning an array containing the removed element.
*/
remove(index: number) {
return this._nodes.splice(index, 1);
}
/**
* The remove function removes an element from an array at a specified index.
* @param {number} index - The index parameter specifies the position of the element to be removed from the array. It
* is a number that represents the index of the element to be removed.
* @returns The method is returning an array containing the removed element.
*/
remove(index: number) {
return this._nodes.splice(index, 1);
}
/**
* The function checks if an array called "_nodes" is empty.
* @returns The method `isEmpty()` is returning a boolean value. It returns `true` if the length of the `_nodes` array
* is 0, indicating that the array is empty. Otherwise, it returns `false`.
*/
isEmpty() {
return this._nodes.length === 0;
}
}
/**
* The function checks if an array called "_nodes" is empty.
* @returns The method `isEmpty()` is returning a boolean value. It returns `true` if the length of the `_nodes` array
* is 0, indicating that the array is empty. Otherwise, it returns `false`.
*/
isEmpty() {
return this._nodes.length === 0;
}
}

View file

@ -4,117 +4,117 @@
* @class
*/
export class Queue<T = number> {
protected _nodes: T[];
protected _offset: number;
protected _nodes: T[];
protected _offset: number;
/**
* The constructor initializes an instance of a class with an optional array of elements and sets the offset to 0.
* @param {T[]} [elements] - The `elements` parameter is an optional array of elements of type `T`. If provided, it
* will be used to initialize the `_nodes` property of the class. If not provided, the `_nodes` property will be
* initialized as an empty array.
*/
constructor(elements?: T[]) {
this._nodes = elements || [];
this._offset = 0;
}
/**
* The constructor initializes an instance of a class with an optional array of elements and sets the offset to 0.
* @param {T[]} [elements] - The `elements` parameter is an optional array of elements of type `T`. If provided, it
* will be used to initialize the `_nodes` property of the class. If not provided, the `_nodes` property will be
* initialized as an empty array.
*/
constructor(elements?: T[]) {
this._nodes = elements || [];
this._offset = 0;
}
/**
* The function "fromArray" creates a new Queue object from an array of elements.Creates a queue from an existing array.
* @public
* @static
* @param {T[]} elements - The "elements" parameter is an array of elements of type T.
* @returns The method is returning a new instance of the Queue class, initialized with the elements from the input
* array.
*/
static fromArray<T>(elements: T[]): Queue<T> {
return new Queue(elements);
}
/**
* The function "fromArray" creates a new Queue object from an array of elements.Creates a queue from an existing array.
* @public
* @static
* @param {T[]} elements - The "elements" parameter is an array of elements of type T.
* @returns The method is returning a new instance of the Queue class, initialized with the elements from the input
* array.
*/
static fromArray<T>(elements: T[]): Queue<T> {
return new Queue(elements);
}
/**
* The add function adds an element to the end of the queue and returns the updated queue.Adds an element at the back of the queue.
* @param {T} element - The `element` parameter represents the element that you want to add to the queue.
* @returns The `add` method is returning a `Queue<T>` object.
*/
add(element: T): Queue<T> {
this._nodes.push(element);
return this;
}
/**
* The add function adds an element to the end of the queue and returns the updated queue.Adds an element at the back of the queue.
* @param {T} element - The `element` parameter represents the element that you want to add to the queue.
* @returns The `add` method is returning a `Queue<T>` object.
*/
add(element: T): Queue<T> {
this._nodes.push(element);
return this;
}
/**
* The `poll` function removes and returns the first element in the queue, and adjusts the internal data structure if
* necessary to optimize performance.
* @returns The function `poll()` returns either the first element in the queue or `null` if the queue is empty.
*/
poll(): T | null {
if (this.size() === 0) return null;
/**
* The `poll` function removes and returns the first element in the queue, and adjusts the internal data structure if
* necessary to optimize performance.
* @returns The function `poll()` returns either the first element in the queue or `null` if the queue is empty.
*/
poll(): T | null {
if (this.size() === 0) return null;
const first = this.peek();
this._offset += 1;
const first = this.peek();
this._offset += 1;
if (this._offset * 2 < this._nodes.length) return first;
if (this._offset * 2 < this._nodes.length) return first;
// only remove dequeued elements when reaching half size
// to decrease latency of shifting elements.
this._nodes = this._nodes.slice(this._offset);
this._offset = 0;
return first;
}
// only remove dequeued elements when reaching half size
// to decrease latency of shifting elements.
this._nodes = this._nodes.slice(this._offset);
this._offset = 0;
return first;
}
/**
* The `peek` function returns the first element of the array `_nodes` if it exists, otherwise it returns `null`.
* @returns The `peek()` method returns the first element of the data structure, represented by the `_nodes` array at
* the `_offset` index. If the data structure is empty (size is 0), it returns `null`.
*/
peek(): T | null {
return this.size() > 0 ? this._nodes[this._offset] : null;
}
/**
* The `peek` function returns the first element of the array `_nodes` if it exists, otherwise it returns `null`.
* @returns The `peek()` method returns the first element of the data structure, represented by the `_nodes` array at
* the `_offset` index. If the data structure is empty (size is 0), it returns `null`.
*/
peek(): T | null {
return this.size() > 0 ? this._nodes[this._offset] : null;
}
/**
* The `peekLast` function returns the last element in an array-like data structure, or null if the structure is empty.
* @returns The method `peekLast()` returns the last element of the `_nodes` array if the array is not empty. If the
* array is empty, it returns `null`.
*/
peekLast(): T | null {
return this.size() > 0 ? this._nodes[this._nodes.length - 1] : null;
}
/**
* The `peekLast` function returns the last element in an array-like data structure, or null if the structure is empty.
* @returns The method `peekLast()` returns the last element of the `_nodes` array if the array is not empty. If the
* array is empty, it returns `null`.
*/
peekLast(): T | null {
return this.size() > 0 ? this._nodes[this._nodes.length - 1] : null;
}
/**
* The size function returns the number of elements in an array.
* @returns {number} The size of the array, which is the difference between the length of the array and the offset.
*/
size(): number {
return this._nodes.length - this._offset;
}
/**
* The size function returns the number of elements in an array.
* @returns {number} The size of the array, which is the difference between the length of the array and the offset.
*/
size(): number {
return this._nodes.length - this._offset;
}
/**
* The function checks if a data structure is empty by comparing its size to zero.
* @returns {boolean} A boolean value indicating whether the size of the object is 0 or not.
*/
isEmpty(): boolean {
return this.size() === 0;
}
/**
* The function checks if a data structure is empty by comparing its size to zero.
* @returns {boolean} A boolean value indicating whether the size of the object is 0 or not.
*/
isEmpty(): boolean {
return this.size() === 0;
}
/**
* The toArray() function returns an array of elements from the current offset to the end of the _nodes array.
* @returns An array of type T is being returned.
*/
toArray(): T[] {
return this._nodes.slice(this._offset);
}
/**
* The toArray() function returns an array of elements from the current offset to the end of the _nodes array.
* @returns An array of type T is being returned.
*/
toArray(): T[] {
return this._nodes.slice(this._offset);
}
/**
* The clear function resets the nodes array and offset to their initial values.
*/
clear(): void {
this._nodes = [];
this._offset = 0;
}
/**
* The clear function resets the nodes array and offset to their initial values.
*/
clear(): void {
this._nodes = [];
this._offset = 0;
}
/**
* The `clone()` function returns a new Queue object with the same elements as the original Queue.
* @returns The `clone()` method is returning a new instance of the `Queue` class.
*/
clone(): Queue<T> {
return new Queue(this._nodes.slice(this._offset));
}
/**
* The `clone()` function returns a new Queue object with the same elements as the original Queue.
* @returns The `clone()` method is returning a new instance of the `Queue` class.
*/
clone(): Queue<T> {
return new Queue(this._nodes.slice(this._offset));
}
}

View file

@ -4,95 +4,95 @@
* @class
*/
export class Stack<T = number> {
protected _elements: T[];
protected _elements: T[];
/**
* The constructor initializes an array of elements, which can be provided as an optional parameter.
* @param {T[]} [elements] - The `elements` parameter is an optional parameter of type `T[]`, which represents an array
* of elements of type `T`. It is used to initialize the `_elements` property of the class. If the `elements` parameter
* is provided and is an array, it is assigned to the `_elements
*/
constructor(elements?: T[]) {
this._elements = Array.isArray(elements) ? elements : [];
}
/**
* The constructor initializes an array of elements, which can be provided as an optional parameter.
* @param {T[]} [elements] - The `elements` parameter is an optional parameter of type `T[]`, which represents an array
* of elements of type `T`. It is used to initialize the `_elements` property of the class. If the `elements` parameter
* is provided and is an array, it is assigned to the `_elements
*/
constructor(elements?: T[]) {
this._elements = Array.isArray(elements) ? elements : [];
}
/**
* The function "fromArray" creates a new Stack object from an array of elements.
* @param {T[]} elements - The `elements` parameter is an array of elements of type `T`.
* @returns {Stack} The method is returning a new instance of the Stack class, initialized with the elements from the input
* array.
*/
static fromArray<T>(elements: T[]): Stack<T> {
return new Stack(elements);
}
/**
* The function "fromArray" creates a new Stack object from an array of elements.
* @param {T[]} elements - The `elements` parameter is an array of elements of type `T`.
* @returns {Stack} The method is returning a new instance of the Stack class, initialized with the elements from the input
* array.
*/
static fromArray<T>(elements: T[]): Stack<T> {
return new Stack(elements);
}
/**
* The function checks if an array is empty and returns a boolean value.
* @returns A boolean value indicating whether the `_elements` array is empty or not.
*/
isEmpty(): boolean {
return this._elements.length === 0;
}
/**
* The function checks if an array is empty and returns a boolean value.
* @returns A boolean value indicating whether the `_elements` array is empty or not.
*/
isEmpty(): boolean {
return this._elements.length === 0;
}
/**
* The size() function returns the number of elements in an array.
* @returns The size of the elements array.
*/
size(): number {
return this._elements.length;
}
/**
* The size() function returns the number of elements in an array.
* @returns The size of the elements array.
*/
size(): number {
return this._elements.length;
}
/**
* The `peek` function returns the last element of an array, or null if the array is empty.
* @returns The `peek()` function returns the last element of the `_elements` array, or `null` if the array is empty.
*/
peek(): T | null {
if (this.isEmpty()) return null;
/**
* The `peek` function returns the last element of an array, or null if the array is empty.
* @returns The `peek()` function returns the last element of the `_elements` array, or `null` if the array is empty.
*/
peek(): T | null {
if (this.isEmpty()) return null;
return this._elements[this._elements.length - 1];
}
return this._elements[this._elements.length - 1];
}
/**
* The push function adds an element to the stack and returns the updated stack.
* @param {T} element - The parameter "element" is of type T, which means it can be any data type.
* @returns The `push` method is returning the updated `Stack<T>` object.
*/
push(element: T): Stack<T> {
this._elements.push(element);
return this;
}
/**
* The push function adds an element to the stack and returns the updated stack.
* @param {T} element - The parameter "element" is of type T, which means it can be any data type.
* @returns The `push` method is returning the updated `Stack<T>` object.
*/
push(element: T): Stack<T> {
this._elements.push(element);
return this;
}
/**
* The `pop` function removes and returns the last element from an array, or returns null if the array is empty.
* @returns The `pop()` method is returning the last element of the array `_elements` if the array is not empty. If the
* array is empty, it returns `null`.
*/
pop(): T | null {
if (this.isEmpty()) return null;
/**
* The `pop` function removes and returns the last element from an array, or returns null if the array is empty.
* @returns The `pop()` method is returning the last element of the array `_elements` if the array is not empty. If the
* array is empty, it returns `null`.
*/
pop(): T | null {
if (this.isEmpty()) return null;
return this._elements.pop() || null;
}
return this._elements.pop() || null;
}
/**
* The toArray function returns a copy of the elements in an array.
* @returns An array of type T.
*/
toArray(): T[] {
return this._elements.slice();
}
/**
* The toArray function returns a copy of the elements in an array.
* @returns An array of type T.
*/
toArray(): T[] {
return this._elements.slice();
}
/**
* The clear function clears the elements array.
*/
clear(): void {
this._elements = [];
}
/**
* The clear function clears the elements array.
*/
clear(): void {
this._elements = [];
}
/**
* The `clone()` function returns a new `Stack` object with the same elements as the original stack.
* @returns The `clone()` method is returning a new `Stack` object with a copy of the `_elements` array.
*/
clone(): Stack<T> {
return new Stack(this._elements.slice());
}
/**
* The `clone()` function returns a new `Stack` object with the same elements as the original stack.
* @returns The `clone()` method is returning a new `Stack` object with a copy of the `_elements` array.
*/
clone(): Stack<T> {
return new Stack(this._elements.slice());
}
}

View file

@ -1,69 +1,69 @@
export class TreeNode<T = any> {
constructor(id: string, value?: T, children?: TreeNode<T>[]) {
this._id = id;
this._value = value || undefined;
this._children = children || [];
constructor(id: string, value?: T, children?: TreeNode<T>[]) {
this._id = id;
this._value = value || undefined;
this._children = children || [];
}
private _id: string;
get id(): string {
return this._id;
}
set id(value: string) {
this._id = value;
}
private _value?: T | undefined;
get value(): T | undefined {
return this._value;
}
set value(value: T | undefined) {
this._value = value;
}
private _children?: TreeNode<T>[] | undefined;
get children(): TreeNode<T>[] | undefined {
return this._children;
}
set children(value: TreeNode<T>[] | undefined) {
this._children = value;
}
addChildren(children: TreeNode<T> | TreeNode<T> []) {
if (!this.children) {
this.children = [];
}
private _id: string;
get id(): string {
return this._id;
if (children instanceof TreeNode) {
this.children.push(children);
} else {
this.children = this.children.concat(children);
}
}
set id(value: string) {
this._id = value;
}
private _value?: T | undefined;
get value(): T | undefined {
return this._value;
}
set value(value: T | undefined) {
this._value = value;
}
private _children?: TreeNode<T>[] | undefined;
get children(): TreeNode<T>[] | undefined {
return this._children;
}
set children(value: TreeNode<T>[] | undefined) {
this._children = value;
}
addChildren(children: TreeNode<T> | TreeNode<T> []) {
if (!this.children) {
this.children = [];
getHeight() {
// eslint-disable-next-line @typescript-eslint/no-this-alias
const beginRoot = this;
let maxDepth = 1;
if (beginRoot) {
const bfs = (node: TreeNode<T>, level: number) => {
if (level > maxDepth) {
maxDepth = level;
}
if (children instanceof TreeNode) {
this.children.push(children);
} else {
this.children = this.children.concat(children);
const {children} = node;
if (children) {
for (let i = 0, len = children.length; i < len; i++) {
bfs(children[i], level + 1);
}
}
};
bfs(beginRoot, 1);
}
getHeight() {
// eslint-disable-next-line @typescript-eslint/no-this-alias
const beginRoot = this;
let maxDepth = 1;
if (beginRoot) {
const bfs = (node: TreeNode<T>, level: number) => {
if (level > maxDepth) {
maxDepth = level;
}
const {children} = node;
if (children) {
for (let i = 0, len = children.length; i < len; i++) {
bfs(children[i], level + 1);
}
}
};
bfs(beginRoot, 1);
}
return maxDepth;
}
}
return maxDepth;
}
}

View file

@ -7,221 +7,221 @@
*/
export class TrieNode {
constructor(v: string) {
this._val = v;
this._isEnd = false;
this._children = new Map<string, TrieNode>();
}
constructor(v: string) {
this._val = v;
this._isEnd = false;
this._children = new Map<string, TrieNode>();
}
private _val;
private _val;
get val(): string {
return this._val;
}
get val(): string {
return this._val;
}
set val(v: string) {
this._val = v;
}
set val(v: string) {
this._val = v;
}
protected _children: Map<string, TrieNode>;
protected _children: Map<string, TrieNode>;
get children(): Map<string, TrieNode> {
return this._children;
}
get children(): Map<string, TrieNode> {
return this._children;
}
set children(v: Map<string, TrieNode>) {
this._children = v;
}
set children(v: Map<string, TrieNode>) {
this._children = v;
}
protected _isEnd: boolean;
protected _isEnd: boolean;
get isEnd(): boolean {
return this._isEnd;
}
get isEnd(): boolean {
return this._isEnd;
}
set isEnd(v: boolean) {
this._isEnd = v;
}
set isEnd(v: boolean) {
this._isEnd = v;
}
}
export class Trie {
constructor(words?: string[]) {
this._root = new TrieNode('');
if (words) {
for (const i of words) {
this.add(i);
constructor(words?: string[]) {
this._root = new TrieNode('');
if (words) {
for (const i of words) {
this.add(i);
}
}
}
protected _root: TrieNode;
get root() {
return this._root;
}
set root(v: TrieNode) {
this._root = v;
}
add(word: string): boolean {
let cur = this._root;
for (const c of word) {
let nodeC = cur.children.get(c);
if (!nodeC) {
nodeC = new TrieNode(c);
cur.children.set(c, nodeC);
}
cur = nodeC;
}
cur.isEnd = true;
return true;
}
has(input: string): boolean {
let cur = this._root;
for (const c of input) {
const nodeC = cur.children.get(c);
if (!nodeC) return false;
cur = nodeC;
}
return cur.isEnd;
}
remove(word: string) {
let isDeleted = false;
const dfs = (cur: TrieNode, i: number): boolean => {
const char = word[i];
const child = cur.children.get(char);
if (child) {
if (i === word.length - 1) {
if (child.isEnd) {
if (child.children.size > 0) {
child.isEnd = false;
} else {
cur.children.delete(char);
}
isDeleted = true;
return true;
}
return false;
}
}
protected _root: TrieNode;
get root() {
return this._root;
}
set root(v: TrieNode) {
this._root = v;
}
add(word: string): boolean {
let cur = this._root;
for (const c of word) {
let nodeC = cur.children.get(c);
if (!nodeC) {
nodeC = new TrieNode(c);
cur.children.set(c, nodeC);
}
cur = nodeC;
const res = dfs(child, i + 1);
if (res && !cur.isEnd && child.children.size === 0) {
cur.children.delete(char);
return true;
}
cur.isEnd = true;
return true;
return false;
}
return false;
}
has(input: string): boolean {
let cur = this._root;
for (const c of input) {
const nodeC = cur.children.get(c);
if (!nodeC) return false;
cur = nodeC;
dfs(this.root, 0);
return isDeleted;
}
// --- start additional methods ---
/**
* The function checks if a given input string has an absolute prefix in a tree data structure.Only can present as a prefix, not a word
* @param {string} input - The input parameter is a string that represents the input value for the function.
* @returns a boolean value.
*/
isAbsPrefix(input: string): boolean {
let cur = this._root;
for (const c of input) {
const nodeC = cur.children.get(c);
if (!nodeC) return false;
cur = nodeC;
}
return !cur.isEnd;
}
/**
* The function checks if a given input string is a prefix of any existing string in a tree structure.Can present as a abs prefix or word
* @param {string} input - The input parameter is a string that represents the prefix we want to check.
* @returns a boolean value.
*/
isPrefix(input: string): boolean {
let cur = this._root;
for (const c of input) {
const nodeC = cur.children.get(c);
if (!nodeC) return false;
cur = nodeC;
}
return true;
}
/**
* The function checks if the input string is a common prefix in a Trie data structure.Check if the input string is the common prefix of all the words
* @param {string} input - The input parameter is a string that represents the common prefix that we want to check for
* in the Trie data structure.
* @returns a boolean value indicating whether the input string is a common prefix in the Trie data structure.
*/
isCommonPrefix(input: string): boolean {
let commonPre = '';
const dfs = (cur: TrieNode) => {
commonPre += cur.val;
if (commonPre === input) return;
if (cur.isEnd) return;
if (cur && cur.children && cur.children.size === 1) dfs(Array.from(cur.children.values())[0]);
else return;
}
dfs(this._root);
return commonPre === input;
}
/**
* The function `getLongestCommonPrefix` returns the longest common prefix among all the words stored in a Trie data
* structure.
* @returns The function `getLongestCommonPrefix` returns a string, which is the longest common prefix found in the
* Trie.
*/
getLongestCommonPrefix(): string {
let commonPre = '';
const dfs = (cur: TrieNode) => {
commonPre += cur.val;
if (cur.isEnd) return;
if (cur && cur.children && cur.children.size === 1) dfs(Array.from(cur.children.values())[0]);
else return;
}
dfs(this._root);
return commonPre;
}
/**
* The `getAll` function returns an array of all words in a Trie data structure that start with a given prefix.
* @param [prefix] - The `prefix` parameter is a string that represents the prefix that we want to search for in the
* trie. It is an optional parameter, so if no prefix is provided, it will default to an empty string.
* @returns an array of strings.
*/
getAll(prefix = ''): string[] {
const words: string[] = [];
function dfs(node: TrieNode, word: string) {
for (const char of node.children.keys()) {
const charNode = node.children.get(char);
if (charNode !== undefined) {
dfs(charNode, word.concat(char));
}
return cur.isEnd;
}
if (node.isEnd) {
words.push(word);
}
}
remove(word: string) {
let isDeleted = false;
const dfs = (cur: TrieNode, i: number): boolean => {
const char = word[i];
const child = cur.children.get(char);
if (child) {
if (i === word.length - 1) {
if (child.isEnd) {
if (child.children.size > 0) {
child.isEnd = false;
} else {
cur.children.delete(char);
}
isDeleted = true;
return true;
}
return false;
}
const res = dfs(child, i + 1);
if (res && !cur.isEnd && child.children.size === 0) {
cur.children.delete(char);
return true;
}
return false;
}
return false;
}
let startNode = this._root;
dfs(this.root, 0);
return isDeleted;
if (prefix) {
for (const c of prefix) {
const nodeC = startNode.children.get(c);
if (nodeC) startNode = nodeC;
}
}
// --- start additional methods ---
/**
* The function checks if a given input string has an absolute prefix in a tree data structure.Only can present as a prefix, not a word
* @param {string} input - The input parameter is a string that represents the input value for the function.
* @returns a boolean value.
*/
isAbsPrefix(input: string): boolean {
let cur = this._root;
for (const c of input) {
const nodeC = cur.children.get(c);
if (!nodeC) return false;
cur = nodeC;
}
return !cur.isEnd;
}
dfs(startNode, prefix);
return words;
}
/**
* The function checks if a given input string is a prefix of any existing string in a tree structure.Can present as a abs prefix or word
* @param {string} input - The input parameter is a string that represents the prefix we want to check.
* @returns a boolean value.
*/
isPrefix(input: string): boolean {
let cur = this._root;
for (const c of input) {
const nodeC = cur.children.get(c);
if (!nodeC) return false;
cur = nodeC;
}
return true;
}
/**
* The function checks if the input string is a common prefix in a Trie data structure.Check if the input string is the common prefix of all the words
* @param {string} input - The input parameter is a string that represents the common prefix that we want to check for
* in the Trie data structure.
* @returns a boolean value indicating whether the input string is a common prefix in the Trie data structure.
*/
isCommonPrefix(input: string): boolean {
let commonPre = '';
const dfs = (cur: TrieNode) => {
commonPre += cur.val;
if (commonPre === input) return;
if (cur.isEnd) return;
if (cur && cur.children && cur.children.size === 1) dfs(Array.from(cur.children.values())[0]);
else return;
}
dfs(this._root);
return commonPre === input;
}
/**
* The function `getLongestCommonPrefix` returns the longest common prefix among all the words stored in a Trie data
* structure.
* @returns The function `getLongestCommonPrefix` returns a string, which is the longest common prefix found in the
* Trie.
*/
getLongestCommonPrefix(): string {
let commonPre = '';
const dfs = (cur: TrieNode) => {
commonPre += cur.val;
if (cur.isEnd) return;
if (cur && cur.children && cur.children.size === 1) dfs(Array.from(cur.children.values())[0]);
else return;
}
dfs(this._root);
return commonPre;
}
/**
* The `getAll` function returns an array of all words in a Trie data structure that start with a given prefix.
* @param [prefix] - The `prefix` parameter is a string that represents the prefix that we want to search for in the
* trie. It is an optional parameter, so if no prefix is provided, it will default to an empty string.
* @returns an array of strings.
*/
getAll(prefix = ''): string[] {
const words: string[] = [];
function dfs(node: TrieNode, word: string) {
for (const char of node.children.keys()) {
const charNode = node.children.get(char);
if (charNode !== undefined) {
dfs(charNode, word.concat(char));
}
}
if (node.isEnd) {
words.push(word);
}
}
let startNode = this._root;
if (prefix) {
for (const c of prefix) {
const nodeC = startNode.children.get(c);
if (nodeC) startNode = nodeC;
}
}
dfs(startNode, prefix);
return words;
}
// --- end additional methods ---
// --- end additional methods ---
}

View file

@ -1,190 +1,190 @@
import {
AbstractBinaryTreeNodeProperties,
AbstractBinaryTreeNodeProperty,
BinaryTreeDeletedResult,
BinaryTreeNodeId,
BinaryTreeNodePropertyName,
DFSOrderPattern,
FamilyPosition,
LoopType,
NodeOrPropertyName
AbstractBinaryTreeNodeProperties,
AbstractBinaryTreeNodeProperty,
BinaryTreeDeletedResult,
BinaryTreeNodeId,
BinaryTreeNodePropertyName,
DFSOrderPattern,
FamilyPosition,
LoopType,
NodeOrPropertyName
} from '../types';
import {AbstractBinaryTreeNode} from '../data-structures';
export interface IAbstractBinaryTreeNode<T, NEIGHBOR extends IAbstractBinaryTreeNode<T, NEIGHBOR>> {
get id(): BinaryTreeNodeId
get id(): BinaryTreeNodeId
set id(v: BinaryTreeNodeId)
set id(v: BinaryTreeNodeId)
get val(): T | undefined
get val(): T | undefined
set val(v: T | undefined)
set val(v: T | undefined)
get left(): NEIGHBOR | null | undefined
get left(): NEIGHBOR | null | undefined
set left(v: NEIGHBOR | null | undefined)
set left(v: NEIGHBOR | null | undefined)
get right(): NEIGHBOR | null | undefined
get right(): NEIGHBOR | null | undefined
set right(v: NEIGHBOR | null | undefined)
set right(v: NEIGHBOR | null | undefined)
get parent(): NEIGHBOR | null | undefined
get parent(): NEIGHBOR | null | undefined
set parent(v: NEIGHBOR | null | undefined)
set parent(v: NEIGHBOR | null | undefined)
get familyPosition(): FamilyPosition
get familyPosition(): FamilyPosition
get height(): number
get height(): number
set height(v: number)
set height(v: number)
}
export interface IAbstractBinaryTree<N extends AbstractBinaryTreeNode<N['val'], N>> {
createNode(id: BinaryTreeNodeId, val?: N['val'], count?: number): N | null
createNode(id: BinaryTreeNodeId, val?: N['val'], count?: number): N | null
get loopType(): LoopType
get loopType(): LoopType
get visitedId(): BinaryTreeNodeId[]
get visitedId(): BinaryTreeNodeId[]
get visitedVal(): Array<N['val']>
get visitedVal(): Array<N['val']>
get visitedNode(): N[]
get visitedNode(): N[]
get visitedLeftSum(): number[]
get visitedLeftSum(): number[]
get root(): N | null
get root(): N | null
get size(): number
get size(): number
swapLocation(srcNode: N, destNode: N): N
swapLocation(srcNode: N, destNode: N): N
clear(): void
clear(): void
isEmpty(): boolean
isEmpty(): boolean
add(id: BinaryTreeNodeId | N, val?: N['val']): N | null | undefined
add(id: BinaryTreeNodeId | N, val?: N['val']): N | null | undefined
addMany(idsOrNodes: (BinaryTreeNodeId | N | null)[], data?: N['val'][]): (N | null | undefined)[]
addMany(idsOrNodes: (BinaryTreeNodeId | N | null)[], data?: N['val'][]): (N | null | undefined)[]
fill(idsOrNodes: (BinaryTreeNodeId | N | null)[], data?: N[] | Array<N['val']>): boolean
fill(idsOrNodes: (BinaryTreeNodeId | N | null)[], data?: N[] | Array<N['val']>): boolean
remove(id: BinaryTreeNodeId, ignoreCount?: boolean): BinaryTreeDeletedResult<N>[]
remove(id: BinaryTreeNodeId, ignoreCount?: boolean): BinaryTreeDeletedResult<N>[]
getDepth(node: N): number
getDepth(node: N): number
getHeight(beginRoot?: N | null): number
getHeight(beginRoot?: N | null): number
getMinHeight(beginRoot?: N | null): number
getMinHeight(beginRoot?: N | null): number
isPerfectlyBalanced(beginRoot?: N | null): boolean
isPerfectlyBalanced(beginRoot?: N | null): boolean
getNodes(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName, onlyOne ?: boolean): N[]
getNodes(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName, onlyOne ?: boolean): N[]
has(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName): boolean
has(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName): boolean
get(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName): N | null
get(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName): N | null
getPathToRoot(node: N): N[]
getPathToRoot(node: N): N[]
getLeftMost(): N | null;
getLeftMost(): N | null;
getLeftMost(node: N): N;
getLeftMost(node: N): N;
getLeftMost(node?: N | null): N | null
getLeftMost(node?: N | null): N | null
getRightMost(): N | null;
getRightMost(): N | null;
getRightMost(node: N): N;
getRightMost(node: N): N;
getRightMost(node?: N | null): N | null
getRightMost(node?: N | null): N | null
isSubtreeBST(node: N | null): boolean
isSubtreeBST(node: N | null): boolean
isBST(): boolean
isBST(): boolean
getSubTreeSize(subTreeRoot: N | null | undefined): number
getSubTreeSize(subTreeRoot: N | null | undefined): number
// --- start additional methods ---
// --- start additional methods ---
subTreeSum(subTreeRoot: N, propertyName ?: BinaryTreeNodePropertyName): number
subTreeSum(subTreeRoot: N, propertyName ?: BinaryTreeNodePropertyName): number
subTreeAdd(subTreeRoot: N, delta: number, propertyName ?: BinaryTreeNodePropertyName): boolean
subTreeAdd(subTreeRoot: N, delta: number, propertyName ?: BinaryTreeNodePropertyName): boolean
BFS(): BinaryTreeNodeId[];
BFS(): BinaryTreeNodeId[];
BFS(nodeOrPropertyName: 'id'): BinaryTreeNodeId[];
BFS(nodeOrPropertyName: 'id'): BinaryTreeNodeId[];
BFS(nodeOrPropertyName: 'val'): N['val'][];
BFS(nodeOrPropertyName: 'val'): N['val'][];
BFS(nodeOrPropertyName: 'node'): N[];
BFS(nodeOrPropertyName: 'node'): N[];
BFS(nodeOrPropertyName: 'count'): number[];
BFS(nodeOrPropertyName: 'count'): number[];
BFS(nodeOrPropertyName ?: NodeOrPropertyName): AbstractBinaryTreeNodeProperties<N>
BFS(nodeOrPropertyName ?: NodeOrPropertyName): AbstractBinaryTreeNodeProperties<N>
DFS(): BinaryTreeNodeId[];
DFS(): BinaryTreeNodeId[];
DFS(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'id'): BinaryTreeNodeId[];
DFS(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'id'): BinaryTreeNodeId[];
DFS(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'val'): N[];
DFS(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'val'): N[];
DFS(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'node'): N[];
DFS(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'node'): N[];
DFS(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'count'): number[];
DFS(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'count'): number[];
DFS(pattern ?: 'in' | 'pre' | 'post', nodeOrPropertyName ?: NodeOrPropertyName): AbstractBinaryTreeNodeProperties<N>
DFS(pattern ?: 'in' | 'pre' | 'post', nodeOrPropertyName ?: NodeOrPropertyName): AbstractBinaryTreeNodeProperties<N>
DFSIterative(): BinaryTreeNodeId[];
DFSIterative(): BinaryTreeNodeId[];
DFSIterative(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'id'): BinaryTreeNodeId[];
DFSIterative(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'id'): BinaryTreeNodeId[];
DFSIterative(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'val'): N[];
DFSIterative(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'val'): N[];
DFSIterative(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'node'): N[];
DFSIterative(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'node'): N[];
DFSIterative(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'count'): number[];
DFSIterative(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'count'): number[];
DFSIterative(pattern ?: 'in' | 'pre' | 'post', nodeOrPropertyName ?: NodeOrPropertyName): AbstractBinaryTreeNodeProperties<N>
DFSIterative(pattern ?: 'in' | 'pre' | 'post', nodeOrPropertyName ?: NodeOrPropertyName): AbstractBinaryTreeNodeProperties<N>
levelIterative(node: N | null): BinaryTreeNodeId[];
levelIterative(node: N | null): BinaryTreeNodeId[];
levelIterative(node: N | null, nodeOrPropertyName?: 'id'): BinaryTreeNodeId[];
levelIterative(node: N | null, nodeOrPropertyName?: 'id'): BinaryTreeNodeId[];
levelIterative(node: N | null, nodeOrPropertyName?: 'val'): N['val'][];
levelIterative(node: N | null, nodeOrPropertyName?: 'val'): N['val'][];
levelIterative(node: N | null, nodeOrPropertyName?: 'node'): N[];
levelIterative(node: N | null, nodeOrPropertyName?: 'node'): N[];
levelIterative(node: N | null, nodeOrPropertyName?: 'count'): number[];
levelIterative(node: N | null, nodeOrPropertyName?: 'count'): number[];
levelIterative(node: N | null, nodeOrPropertyName ?: NodeOrPropertyName): AbstractBinaryTreeNodeProperties<N>
levelIterative(node: N | null, nodeOrPropertyName ?: NodeOrPropertyName): AbstractBinaryTreeNodeProperties<N>
listLevels(node: N | null): BinaryTreeNodeId[][];
listLevels(node: N | null): BinaryTreeNodeId[][];
listLevels(node: N | null, nodeOrPropertyName?: 'id'): BinaryTreeNodeId[][];
listLevels(node: N | null, nodeOrPropertyName?: 'id'): BinaryTreeNodeId[][];
listLevels(node: N | null, nodeOrPropertyName?: 'val'): N['val'][][];
listLevels(node: N | null, nodeOrPropertyName?: 'val'): N['val'][][];
listLevels(node: N | null, nodeOrPropertyName?: 'node'): N[][];
listLevels(node: N | null, nodeOrPropertyName?: 'node'): N[][];
listLevels(node: N | null, nodeOrPropertyName?: 'count'): number[][];
listLevels(node: N | null, nodeOrPropertyName?: 'count'): number[][];
listLevels(node: N | null, nodeOrPropertyName?: NodeOrPropertyName): AbstractBinaryTreeNodeProperty<N>[][]
listLevels(node: N | null, nodeOrPropertyName?: NodeOrPropertyName): AbstractBinaryTreeNodeProperty<N>[][]
getPredecessor(node: N): N
getPredecessor(node: N): N
morris(): BinaryTreeNodeId[];
morris(): BinaryTreeNodeId[];
morris(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'id'): BinaryTreeNodeId[];
morris(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'id'): BinaryTreeNodeId[];
morris(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'val'): N[];
morris(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'val'): N[];
morris(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'node'): N[];
morris(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'node'): N[];
morris(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'count'): number[];
morris(pattern?: DFSOrderPattern, nodeOrPropertyName?: 'count'): number[];
morris(pattern?: 'in' | 'pre' | 'post', nodeOrPropertyName?: NodeOrPropertyName): AbstractBinaryTreeNodeProperties<N>
morris(pattern?: 'in' | 'pre' | 'post', nodeOrPropertyName?: NodeOrPropertyName): AbstractBinaryTreeNodeProperties<N>
// --- end additional methods ---
}
// --- end additional methods ---
}

View file

@ -2,31 +2,31 @@ import {VertexId} from '../types';
export interface IAbstractGraph<V, E> {
hasVertex(vertexOrId: V | VertexId): boolean;
hasVertex(vertexOrId: V | VertexId): boolean;
addVertex(id: VertexId, val?: V): boolean;
addVertex(id: VertexId, val?: V): boolean;
removeVertex(vertexOrId: V | VertexId): boolean;
removeVertex(vertexOrId: V | VertexId): boolean;
removeAllVertices(vertices: V[] | VertexId[]): boolean;
removeAllVertices(vertices: V[] | VertexId[]): boolean;
degreeOf(vertexOrId: V | VertexId): number;
degreeOf(vertexOrId: V | VertexId): number;
edgesOf(vertexOrId: V | VertexId): E[];
edgesOf(vertexOrId: V | VertexId): E[];
hasEdge(src: V | VertexId, dest: V | VertexId): boolean;
hasEdge(src: V | VertexId, dest: V | VertexId): boolean;
getEdge(srcOrId: V | VertexId, destOrId: V | VertexId): E | null;
getEdge(srcOrId: V | VertexId, destOrId: V | VertexId): E | null;
edgeSet(): E[];
edgeSet(): E[];
addEdge(src: V | VertexId, dest: V | VertexId, weight: number, val: E): boolean;
addEdge(src: V | VertexId, dest: V | VertexId, weight: number, val: E): boolean;
removeEdge(edge: E): E | null;
removeEdge(edge: E): E | null;
setEdgeWeight(srcOrId: V | VertexId, destOrId: V | VertexId, weight: number): boolean;
setEdgeWeight(srcOrId: V | VertexId, destOrId: V | VertexId, weight: number): boolean;
getMinPathBetween(v1: V | VertexId, v2: V | VertexId, isWeight?: boolean): V[] | null;
getMinPathBetween(v1: V | VertexId, v2: V | VertexId, isWeight?: boolean): V[] | null;
getNeighbors(vertexOrId: V | VertexId): V[];
}
getNeighbors(vertexOrId: V | VertexId): V[];
}

View file

@ -8,21 +8,21 @@ export interface IAVLTreeNode<T, NEIGHBOR extends IAVLTreeNode<T, NEIGHBOR>> ext
export interface IAVLTree<N extends AVLTreeNode<N['val'], N>> extends IBST<N> {
add(id: BinaryTreeNodeId, val?: N['val'] | null): N | null | undefined
add(id: BinaryTreeNodeId, val?: N['val'] | null): N | null | undefined
remove(id: BinaryTreeNodeId, isUpdateAllLeftSum?: boolean): BinaryTreeDeletedResult<N>[]
remove(id: BinaryTreeNodeId, isUpdateAllLeftSum?: boolean): BinaryTreeDeletedResult<N>[]
balanceFactor(node: N): number
balanceFactor(node: N): number
updateHeight(node: N): void
updateHeight(node: N): void
balancePath(node: N): void
balancePath(node: N): void
balanceLL(A: N): void
balanceLL(A: N): void
balanceLR(A: N): void
balanceLR(A: N): void
balanceRR(A: N): void
balanceRR(A: N): void
balanceRL(A: N): void
}
balanceRL(A: N): void
}

View file

@ -6,27 +6,27 @@ export interface IBSTNode<T, NEIGHBOR extends IBSTNode<T, NEIGHBOR>> extends IBi
}
export interface IBST<N extends BSTNode<N['val'], N>> extends IBinaryTree<N> {
createNode(id: BinaryTreeNodeId, val?: N['val'], count?: number): N
createNode(id: BinaryTreeNodeId, val?: N['val'], count?: number): N
add(id: BinaryTreeNodeId, val?: N['val'] | null, count?: number): N | null | undefined
add(id: BinaryTreeNodeId, val?: N['val'] | null, count?: number): N | null | undefined
get(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName): N | null
get(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName): N | null
lastKey(): BinaryTreeNodeId
lastKey(): BinaryTreeNodeId
remove(id: BinaryTreeNodeId, ignoreCount?: boolean): BinaryTreeDeletedResult<N>[]
remove(id: BinaryTreeNodeId, ignoreCount?: boolean): BinaryTreeDeletedResult<N>[]
getNodes(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName, onlyOne ?: boolean): N[]
getNodes(nodeProperty: BinaryTreeNodeId | N, propertyName ?: BinaryTreeNodePropertyName, onlyOne ?: boolean): N[]
// --- start additional functions
// --- start additional functions
lesserSum(id: BinaryTreeNodeId, propertyName ?: BinaryTreeNodePropertyName): number
lesserSum(id: BinaryTreeNodeId, propertyName ?: BinaryTreeNodePropertyName): number
allGreaterNodesAdd(node: N, delta: number, propertyName ?: BinaryTreeNodePropertyName): boolean
allGreaterNodesAdd(node: N, delta: number, propertyName ?: BinaryTreeNodePropertyName): boolean
perfectlyBalance(): boolean
perfectlyBalance(): boolean
isAVLBalanced(): boolean
isAVLBalanced(): boolean
// --- end additional functions
}
// --- end additional functions
}

View file

@ -2,19 +2,19 @@ import {VertexId} from '../types';
import {IAbstractGraph} from './abstract-graph';
export interface IDirectedGraph<V, E> extends IAbstractGraph<V, E> {
incomingEdgesOf(vertex: V): E[];
incomingEdgesOf(vertex: V): E[];
outgoingEdgesOf(vertex: V): E[];
outgoingEdgesOf(vertex: V): E[];
inDegreeOf(vertexOrId: V | VertexId): number;
inDegreeOf(vertexOrId: V | VertexId): number;
outDegreeOf(vertexOrId: V | VertexId): number;
outDegreeOf(vertexOrId: V | VertexId): number;
getEdgeSrc(e: E): V | null;
getEdgeSrc(e: E): V | null;
getEdgeDest(e: E): V | null;
getEdgeDest(e: E): V | null;
removeEdgeSrcToDest(srcOrId: V | VertexId, destOrId: V | VertexId): E | null;
removeEdgeSrcToDest(srcOrId: V | VertexId, destOrId: V | VertexId): E | null;
removeEdgesBetween(v1: V | VertexId, v2: V | VertexId): E[];
}
removeEdgesBetween(v1: V | VertexId, v2: V | VertexId): E[];
}

View file

@ -7,5 +7,5 @@ export interface IRBTreeNode<T, NEIGHBOR extends IRBTreeNode<T, NEIGHBOR>> exten
export interface IRBTree<N extends RBTreeNode<N['val'], N>> extends IBST<N> {
createNode(id: BinaryTreeNodeId, val?: N['val'], count?: number): N
}
createNode(id: BinaryTreeNodeId, val?: N['val'], count?: number): N
}

View file

@ -2,5 +2,5 @@ import {VertexId} from '../types';
import {IAbstractGraph} from './abstract-graph';
export interface IUNDirectedGraph<V, E> extends IAbstractGraph<V, E> {
removeEdgeBetween(v1: V | VertexId, v2: V | VertexId): E | null;
}
removeEdgeBetween(v1: V | VertexId, v2: V | VertexId): E | null;
}

View file

@ -10,13 +10,13 @@ export enum LoopType { ITERATIVE = 'ITERATIVE', RECURSIVE = 'RECURSIVE'}
/* This enumeration defines the position of a node within a family tree composed of three associated nodes, where 'root' represents the root node of the family tree, 'left' represents the left child node, and 'right' represents the right child node. */
export enum FamilyPosition {
ROOT = 'ROOT',
LEFT = 'LEFT',
RIGHT = 'RIGHT',
ROOT_LEFT = 'ROOT_LEFT',
ROOT_RIGHT = 'ROOT_RIGHT',
ISOLATED = 'ISOLATED',
MAL_NODE = 'MAL_NODE'
ROOT = 'ROOT',
LEFT = 'LEFT',
RIGHT = 'RIGHT',
ROOT_LEFT = 'ROOT_LEFT',
ROOT_RIGHT = 'ROOT_RIGHT',
ISOLATED = 'ISOLATED',
MAL_NODE = 'MAL_NODE'
}
export type BinaryTreeNodePropertyName = 'id' | 'val';
@ -26,15 +26,15 @@ export type BinaryTreeNodeId = number;
export type BinaryTreeDeletedResult<N> = { deleted: N | null | undefined, needBalanced: N | null };
export type AbstractBinaryTreeNodeProperty<N extends AbstractBinaryTreeNode<N['val'], N>> =
N['val']
| N
| number
| BinaryTreeNodeId;
N['val']
| N
| number
| BinaryTreeNodeId;
export type AbstractBinaryTreeNodeProperties<N extends AbstractBinaryTreeNode<N['val'], N>> = AbstractBinaryTreeNodeProperty<N>[];
export type AbstractBinaryTreeNodeNested<T> = AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, AbstractBinaryTreeNode<T, any>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
export type AbstractBinaryTreeOptions = {
loopType?: LoopType,
}
loopType?: LoopType,
}

View file

@ -1,5 +1,5 @@
export type VertexId = string | number;
export type EdgeId = string;
export type DijkstraResult<V> =
{ distMap: Map<V, number>, distPaths?: Map<V, V[]>, preMap: Map<V, V | null>, seen: Set<V>, paths: V[][], minDist: number, minPath: V[] }
| null;
{ distMap: Map<V, number>, distPaths?: Map<V, V[]>, preMap: Map<V, V | null>, seen: Set<V>, paths: V[][], minDist: number, minPath: V[] }
| null;

View file

@ -6,7 +6,7 @@ export type BSTComparator = (a: BinaryTreeNodeId, b: BinaryTreeNodeId) => number
export type BSTNodeNested<T> = BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, BSTNode<T, any>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
export type BSTOptions = BinaryTreeOptions & {
comparator?: BSTComparator,
comparator?: BSTComparator,
}
export enum CP {lt = 'lt', eq = 'eq', gt = 'gt'}
export enum CP {lt = 'lt', eq = 'eq', gt = 'gt'}

View file

@ -2,7 +2,7 @@
export type TopologicalStatus = 0 | 1 | 2;
export enum TopologicalProperty {
VAL = 'VAL',
NODE = 'NODE',
ID = 'ID',
VAL = 'VAL',
NODE = 'NODE',
ID = 'ID',
}

View file

@ -1,5 +1,5 @@
export type HeapOptions<T> = {
priorityExtractor?: (element: T) => number;
// TODO there is an idea that support chaining which is for conveniently using the data structure
// isChaining? : boolean
}
priorityExtractor?: (element: T) => number;
// TODO there is an idea that support chaining which is for conveniently using the data structure
// isChaining? : boolean
}

View file

@ -2,12 +2,12 @@ export type Direction = 'up' | 'right' | 'down' | 'left';
export type Turning = { [key in Direction]: Direction };
export type NavigatorParams<T> = {
matrix: T[][],
turning: Turning,
onMove: (cur: [number, number]) => void
init: {
cur: [number, number],
charDir: Direction,
VISITED: T,
}
matrix: T[][],
turning: Turning,
onMove: (cur: [number, number]) => void
init: {
cur: [number, number],
charDir: Direction,
VISITED: T,
}
}

View file

@ -1,9 +1,9 @@
export type PriorityQueueComparator<T> = (a: T, b: T) => number;
export type PriorityQueueOptions<T> = {
nodes?: T[];
isFix?: boolean;
comparator: PriorityQueueComparator<T>;
nodes?: T[];
isFix?: boolean;
comparator: PriorityQueueComparator<T>;
}
export type PriorityQueueDFSOrderPattern = 'pre' | 'in' | 'post';
export type PriorityQueueDFSOrderPattern = 'pre' | 'in' | 'post';

View file

@ -7,19 +7,19 @@ export type NonNumberNonObjectButDefined = string | boolean | symbol | null;
export type ObjectWithoutId = Omit<KeyValueObject, 'id'>;
export type ObjectWithNonNumberId = {
[key: string]: any,
id: string | boolean | symbol | null | object | undefined;
[key: string]: any,
id: string | boolean | symbol | null | object | undefined;
}
export type ObjectWithNumberId = {
[key: string]: any,
id: number;
[key: string]: any,
id: number;
}
export type RestrictValById =
NonNumberNonObjectButDefined
| ObjectWithoutId
| ObjectWithNonNumberId
| ObjectWithNumberId;
NonNumberNonObjectButDefined
| ObjectWithoutId
| ObjectWithNonNumberId
| ObjectWithNumberId;
export type DummyAny = string | number | boolean | null | undefined | object | symbol | void | Function | never;
export type DummyAny = string | number | boolean | null | undefined | object | symbol | void | Function | never;

View file

@ -8,71 +8,71 @@
import type {Thunk, ToThunkFn, TrlAsyncFn, TrlFn} from '../types';
export const uuidV4 = function () {
return 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'.replace(/[x]/g, function (c) {
const r = Math.random() * 16 | 0, v = c == 'x' ? r : (r & 0x3 | 0x8);
return v.toString(16);
});
return 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'.replace(/[x]/g, function (c) {
const r = Math.random() * 16 | 0, v = c == 'x' ? r : (r & 0x3 | 0x8);
return v.toString(16);
});
};
export const arrayRemove = function <T>(array: T[], predicate: (item: T, index: number, array: T[]) => boolean): T[] {
let i = -1, len = array ? array.length : 0;
const result = [];
let i = -1, len = array ? array.length : 0;
const result = [];
while (++i < len) {
const value = array[i];
if (predicate(value, i, array)) {
result.push(value);
Array.prototype.splice.call(array, i--, 1);
len--;
}
while (++i < len) {
const value = array[i];
if (predicate(value, i, array)) {
result.push(value);
Array.prototype.splice.call(array, i--, 1);
len--;
}
}
return result;
return result;
};
export const THUNK_SYMBOL = Symbol('thunk')
export const isThunk = (fnOrValue: any) => {
return typeof fnOrValue === 'function' && fnOrValue.__THUNK__ === THUNK_SYMBOL
return typeof fnOrValue === 'function' && fnOrValue.__THUNK__ === THUNK_SYMBOL
}
export const toThunk = (fn: ToThunkFn): Thunk => {
const thunk = () => fn()
thunk.__THUNK__ = THUNK_SYMBOL
return thunk
const thunk = () => fn()
thunk.__THUNK__ = THUNK_SYMBOL
return thunk
}
export const trampoline = (fn: TrlFn) => {
const cont = (...args: [...Parameters<TrlFn>]) => toThunk(() => fn(...args))
const cont = (...args: [...Parameters<TrlFn>]) => toThunk(() => fn(...args))
return Object.assign(
(...args: [...Parameters<TrlFn>]) => {
let result = fn(...args)
return Object.assign(
(...args: [...Parameters<TrlFn>]) => {
let result = fn(...args)
while (isThunk(result) && typeof result === 'function') {
result = result()
}
while (isThunk(result) && typeof result === 'function') {
result = result()
}
return result
},
{cont}
)
return result
},
{cont}
)
}
export const trampolineAsync = (fn: TrlAsyncFn) => {
const cont = (...args: [...Parameters<TrlAsyncFn>]) => toThunk(() => fn(...args))
const cont = (...args: [...Parameters<TrlAsyncFn>]) => toThunk(() => fn(...args))
return Object.assign(
async (...args: [...Parameters<TrlAsyncFn>]) => {
let result = await fn(...args)
return Object.assign(
async (...args: [...Parameters<TrlAsyncFn>]) => {
let result = await fn(...args)
while (isThunk(result) && typeof result === 'function') {
result = await result()
}
while (isThunk(result) && typeof result === 'function') {
result = await result()
}
return result
},
{cont}
)
return result
},
{cont}
)
}

View file

@ -3,67 +3,67 @@ import {NonNumberNonObjectButDefined, ObjectWithNonNumberId, ObjectWithNumberId,
export const nonNumberNonObjectButDefinedSchema = z.union([z.string(),
z.boolean(), z.any()])
.nullable()
z.boolean(), z.any()])
.nullable()
export const keyValueObjectSchema = z.record(z.unknown())
export const objectWithoutIdSchema = keyValueObjectSchema.refine(obj => !('id' in obj), {
message: 'Object cannot contain the \'id\' field',
message: 'Object cannot contain the \'id\' field',
});
export const keyValueObjectWithIdSchema = z.record(z.any()).and(
z.object({
id: z.union([z.string(), z.number(), z.any()])
})
z.object({
id: z.union([z.string(), z.number(), z.any()])
})
)
export const objectWithNonNumberIdSchema = z.record(z.any()).and(
z.object({
id: z
.union([z.string(), z.boolean(), z.any(), z.any(), z.undefined()])
.nullable()
})
z.object({
id: z
.union([z.string(), z.boolean(), z.any(), z.any(), z.undefined()])
.nullable()
})
)
export const objectWithNumberIdSchema = z.record(z.any()).and(
z.object({
id: z.number()
})
z.object({
id: z.number()
})
)
export const binaryTreeNodeValWithId = z.union([
nonNumberNonObjectButDefinedSchema,
objectWithoutIdSchema,
objectWithNonNumberIdSchema,
objectWithNumberIdSchema
nonNumberNonObjectButDefinedSchema,
objectWithoutIdSchema,
objectWithNonNumberIdSchema,
objectWithNumberIdSchema
])
export function parseBySchema(schema: z.Schema, val: any) {
try {
schema.parse(val);
return true;
} catch (error) {
return false;
}
try {
schema.parse(val);
return true;
} catch (error) {
return false;
}
}
export function isNonNumberNonObjectButDefined(val: any): val is NonNumberNonObjectButDefined {
return parseBySchema(nonNumberNonObjectButDefinedSchema, val);
return parseBySchema(nonNumberNonObjectButDefinedSchema, val);
}
export function isObjectWithoutId(val: any): val is ObjectWithoutId {
return parseBySchema(objectWithoutIdSchema, val);
return parseBySchema(objectWithoutIdSchema, val);
}
export function isObjectWithNonNumberId(val: any): val is ObjectWithNonNumberId {
return parseBySchema(objectWithNonNumberIdSchema, val);
return parseBySchema(objectWithNonNumberIdSchema, val);
}
export function isObjectWithNumberId(val: any): val is ObjectWithNumberId {
return parseBySchema(objectWithNonNumberIdSchema, val);
return parseBySchema(objectWithNonNumberIdSchema, val);
}
export function isNumber(val: any): val is number {
return typeof val === 'number';
}
return typeof val === 'number';
}