shortcuts/encoding.ts
2024-09-27 13:20:19 +02:00

97 lines
2.5 KiB
TypeScript

import pl from "npm:nodejs-polars";
export function oneHotEncoding(dataframe: pl.DataFrame): pl.DataFrame {
let df = pl.DataFrame();
for (const columnName of dataframe.columns) {
const column = dataframe[columnName];
if (!column.isNumeric()) {
df = df.hstack(column.toDummies());
} else {
df = df.hstack(dataframe.select(columnName));
}
}
return df;
}
export function polynomialTransform(
dataframe: pl.DataFrame,
degree = 2,
interaction_only = false,
include_bias = true,
): pl.DataFrame {
let polyRecords: number[][] = [];
dataframe.map((X: number[]) => {
polyRecords.push(
polynomialFeatures(X, degree, interaction_only, include_bias),
);
});
return pl.readRecords(polyRecords);
}
export function polynomialFeatures(
X: number[],
degree = 2,
interaction_only = false,
include_bias = true,
): number[] {
let features = [...X];
let prev_chunk = [...X];
const indices = Array.from({ length: X.length }, (_, i) => i);
for (let d = 1; d < degree; d++) {
const new_chunk: any[] = [];
for (let i = 0; i < (interaction_only ? X.length - d : X.length); i++) {
const v = X[i];
const next_index = new_chunk.length;
for (let j = i + (interaction_only ? 1 : 0); j < prev_chunk.length; j++) {
new_chunk.push(v * prev_chunk[j]);
}
indices[i] = next_index;
}
features = features.concat(new_chunk);
prev_chunk = new_chunk;
}
if (include_bias) {
features.unshift(1);
}
return features;
}
/**
* Adds missing rows at given interval, uses mean of previous and next value.
* Example for one feature: [1, 2, 4, 5] -> [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]
* @param feature
* @param df
* @param bin
*/
export function augmentMeanForward(
feature: string,
df: pl.DataFrame,
interval = 100,
) {
let sorted = df.sort(feature);
let result = sorted.head(0);
let n: null | number = null;
for (let i = 0; i < sorted.height - 1; i++) {
let p1 = n ?? sorted.row(i).at(-1);
let p2 = sorted.row(i + 1).at(-1);
if (p2 - p1 > interval) {
let avg = (p1 + p2) / 2;
result = pl.concat([
result,
pl.concat([result.tail(2), sorted.slice({ offset: i + 1, length: 2 })])
.shift(-1)
.fillNull("mean")
.tail(1),
]);
if (p2 - avg > interval) {
i--;
n = avg;
continue;
}
result = pl.concat([result, sorted.slice(1, i)]);
n = null;
}
}
return result;
}