83 lines
15 KiB
Plaintext
Vendored
83 lines
15 KiB
Plaintext
Vendored
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Stats initialized\n",
|
|
"\n",
|
|
"Linear Regression Line:\n",
|
|
"\tEstimated offset is: 1.474039\n",
|
|
"\tEstimated slope is: 3.000136\n",
|
|
"\tR^2 is: 0.999989\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import stats from \"https://l12.xyz/x/shortcuts/raw/stat/mod.ts\";\n",
|
|
"\n",
|
|
"const xs = [];\n",
|
|
"const ys = [];\n",
|
|
"\n",
|
|
"for (let i = 0; i < 100; i++) {\n",
|
|
" xs.push(i);\n",
|
|
" ys.push((1 + 3 * i) + Math.random());\n",
|
|
"}\n",
|
|
"\n",
|
|
"const linreg = stats.LinearRegression(xs, ys, [], false);\n",
|
|
"const r = stats.RSquared(xs, ys, [], linreg.alpha, linreg.beta);\n",
|
|
"\n",
|
|
"console.log(\"\\nLinear Regression Line:\");\n",
|
|
"console.log(\"\\tEstimated offset is: \", linreg.alpha.toFixed(6));\n",
|
|
"console.log(\"\\tEstimated slope is: \", linreg.beta.toFixed(6));\n",
|
|
"console.log(\"\\tR^2 is: \", r.toFixed(6));"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/markdown": [
|
|
"![name]()"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"import plot from \"../plot/mod.ts?5\";\n",
|
|
"\n",
|
|
"plot.DrawHist(ys, 16, { title : \"Histogram of Y values\" });\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Deno",
|
|
"language": "typescript",
|
|
"name": "deno"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": "typescript",
|
|
"file_extension": ".ts",
|
|
"mimetype": "text/x.typescript",
|
|
"name": "typescript",
|
|
"nbconvert_exporter": "script",
|
|
"pygments_lexer": "typescript",
|
|
"version": "5.6.2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|