export interface Stat { Bhattacharyya: (xs: number[], ys: number[]) => number; BivariateMoment: ( q: number, p: number, xs: number[], ys: number[], weights: number[], ) => number; CDF: (q: number, xs: number[], weights: number[]) => number; ChiSquare: (xs: number[], ys: number[]) => number; CircularMean: (xs: number[], weights: number[]) => number; Correlation: (xs: number[], ys: number[], weights: number[]) => number; Covariance: (xs: number[], ys: number[], weights: number[]) => number; CrossEntropy: (xs: number[], ys: number[]) => number; Entropy: (xs: number[]) => number; ExKurtosis: (xs: number[], weights: number[]) => number; GeometricMean: (xs: number[], weights: number[]) => number; HarmonicMean: (xs: number[], weights: number[]) => number; Hellinger: (xs: number[], ys: number[]) => number; Histogram: ( counts: number[], divs: number[], xs: number[], bins: number, ) => number[]; JensenShannon: (xs: number[], ys: number[]) => number; Kendall: (xs: number[], ys: number[], weights: number[]) => number; KolmogorovSmirnov: ( xs: number[], xw: number[], ys: number[], yw: number[], ) => number; KullbackLeibler: (xs: number[], ys: number[]) => number; LinearRegression: ( xs: number[], ys: number[], weights: number[], origin: boolean, ) => { alpha: number; beta: number }; Mean: (xs: number[], weights: number[]) => number; MeanStdDev: ( xs: number[], weights: number[], ) => { mean: number; stdDev: number }; MeanVariance: ( xs: number[], weights: number[], ) => { mean: number; variance: number }; Mode: (xs: number[], weights: number[]) => { value: number; count: number }; Moment: (q: number, xs: number[], weights: number[]) => number; MomentAbout: ( q: number, xs: number[], mean: number, weights: number[], ) => number; PopMeanStdDev: ( xs: number[], weights: number[], ) => { mean: number; stdDev: number }; PopMeanVariance: ( xs: number[], weights: number[], ) => { mean: number; variance: number }; PopStdDev: (xs: number[], weights: number[]) => number; PopVariance: (xs: number[], weights: number[]) => number; Quantile: ( q: number, type: "linear" | "empirical", xs: number[], weights: number[], ) => number; RNoughtSquared: ( xs: number[], ys: number[], weights: number[], beta: number, ) => number; ROC: ( cutoffs: number[], ys: number[], classes: boolean[], weights: number[], ) => { tpr: number[]; fpr: number[]; tresh: number[] }; RSquared: ( xs: number[], ys: number[], weights: number[], alpha: number, beta: number, ) => number; RSquaredFrom: ( estimates: number[], ys: number[], weights: number[], ) => number; Skew: (xs: number[], weights: number[]) => number; SortWeighted: (xs: number[], weights: number[]) => number[]; SortWeightedLabeled: ( xs: number[], labels: boolean[], weights: number[], ) => { xs: number[]; labels: boolean[] }; StdDev: (xs: number[], weights: number[]) => number; StdErr: (std: number, size: number) => number; StdScore: (x: number, mean: number, stdDev: number) => number; TOC: ( classes: boolean[], ys: number[], ) => { min: number[]; ntp: number[]; max: number[] }; Variance: (xs: number[], weights: number[]) => number; }