/* * Ported from http://svn.r-project.org/R/trunk/src/nmath/qnorm.c * * Mathlib : A C Library of Special Functions * Copyright (C) 1998 Ross Ihaka * Copyright (C) 2000--2005 The R Core Team * based on AS 111 (C) 1977 Royal Statistical Society * and on AS 241 (C) 1988 Royal Statistical Society * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * http://www.r-project.org/Licenses/ */ // The inverse of cdf. function normalQuantile(p, mu, sigma) { var p, q, r, val; if (sigma < 0) { return -1; } if (sigma == 0) { return mu; } q = p - 0.5; if (0.075 <= p && p <= 0.925) { r = 0.180625 - q * q; val = q * (((((((r * 2509.0809287301226727 + 33430.575583588128105) * r + 67265.770927008700853) * r + 45921.953931549871457) * r + 13731.693765509461125) * r + 1971.5909503065514427) * r + 133.14166789178437745) * r + 3.387132872796366608) / (((((((r * 5226.495278852854561 + 28729.085735721942674) * r + 39307.89580009271061) * r + 21213.794301586595867) * r + 5394.1960214247511077) * r + 687.1870074920579083) * r + 42.313330701600911252) * r + 1); } else { /* closer than 0.075 from {0,1} boundary */ /* r = min(p, 1-p) < 0.075 */ if (q > 0) { r = 1 - p; } else { r = p; /* = R_DT_Iv(p) ^= p */ } r = Math.sqrt( -Math.log(r), ); /* r = sqrt(-log(r)) <==> min(p, 1-p) = exp( - r^2 ) */ if (r <= 5.) { /* <==> min(p,1-p) >= exp(-25) ~= 1.3888e-11 */ r += -1.6; val = (((((((r * 7.7454501427834140764e-4 + 0.0227238449892691845833) * r + .24178072517745061177) * r + 1.27045825245236838258) * r + 3.64784832476320460504) * r + 5.7694972214606914055) * r + 4.6303378461565452959) * r + 1.42343711074968357734) / (((((((r * 1.05075007164441684324e-9 + 5.475938084995344946e-4) * r + .0151986665636164571966) * r + 0.14810397642748007459) * r + 0.68976733498510000455) * r + 1.6763848301838038494) * r + 2.05319162663775882187) * r + 1); } else { /* very close to 0 or 1 */ r += -5.; val = (((((((r * 2.01033439929228813265e-7 + 2.71155556874348757815e-5) * r + 0.0012426609473880784386) * r + 0.026532189526576123093) * r + .29656057182850489123) * r + 1.7848265399172913358) * r + 5.4637849111641143699) * r + 6.6579046435011037772) / (((((((r * 2.04426310338993978564e-15 + 1.4215117583164458887e-7) * r + 1.8463183175100546818e-5) * r + 7.868691311456132591e-4) * r + .0148753612908506148525) * r + .13692988092273580531) * r + .59983220655588793769) * r + 1.); } if (q < 0.0) { val = -val; } /* return (q >= 0.)? r : -r ;*/ } return mu + sigma * val; } /* * Ported from http://svn.r-project.org/R/trunk/src/library/stats/src/swilk.c * * R : A Computer Language for Statistical Data Analysis * Copyright (C) 2000-12 The R Core Team. * * Based on Applied Statistics algorithms AS181, R94 * (C) Royal Statistical Society 1982, 1995 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * http://www.r-project.org/Licenses/ */ function sign(x) { if (x == 0) { return 0; } return x > 0 ? 1 : -1; } export function ShapiroWilkW(x) { function poly(cc, nord, x) { /* Algorithm AS 181.2 Appl. Statist. (1982) Vol. 31, No. 2 Calculates the algebraic polynomial of order nord-1 with array of coefficients cc. Zero order coefficient is cc(1) = cc[0] */ var p; var ret_val; ret_val = cc[0]; if (nord > 1) { p = x * cc[nord - 1]; for (j = nord - 2; j > 0; j--) { p = (p + cc[j]) * x; } ret_val += p; } return ret_val; } x = x.sort(function (a, b) { return a - b; }); var n = x.length; if (n < 3) { return undefined; } var nn2 = Math.floor(n / 2); var a = new Array(Math.floor(nn2) + 1); /* 1-based */ /* ALGORITHM AS R94 APPL. STATIST. (1995) vol.44, no.4, 547-551. Calculates the Shapiro-Wilk W test and its significance level */ var small = 1e-19; /* polynomial coefficients */ var g = [-2.273, 0.459]; var c1 = [0, 0.221157, -0.147981, -2.07119, 4.434685, -2.706056]; var c2 = [0, 0.042981, -0.293762, -1.752461, 5.682633, -3.582633]; var c3 = [0.544, -0.39978, 0.025054, -6.714e-4]; var c4 = [1.3822, -0.77857, 0.062767, -0.0020322]; var c5 = [-1.5861, -0.31082, -0.083751, 0.0038915]; var c6 = [-0.4803, -0.082676, 0.0030302]; /* Local variables */ var i, j, i1; var ssassx, summ2, ssumm2, gamma, range; var a1, a2, an, m, s, sa, xi, sx, xx, y, w1; var fac, asa, an25, ssa, sax, rsn, ssx, xsx; var pw = 1; an = n; if (n == 3) { a[1] = 0.70710678; /* = sqrt(1/2) */ } else { an25 = an + 0.25; summ2 = 0.0; for (i = 1; i <= nn2; i++) { a[i] = normalQuantile((i - 0.375) / an25, 0, 1); // p(X <= x), var r__1 = a[i]; summ2 += r__1 * r__1; } summ2 *= 2; ssumm2 = Math.sqrt(summ2); rsn = 1 / Math.sqrt(an); a1 = poly(c1, 6, rsn) - a[1] / ssumm2; /* Normalize a[] */ if (n > 5) { i1 = 3; a2 = -a[2] / ssumm2 + poly(c2, 6, rsn); fac = Math.sqrt( (summ2 - 2 * (a[1] * a[1]) - 2 * (a[2] * a[2])) / (1 - 2 * (a1 * a1) - 2 * (a2 * a2)), ); a[2] = a2; } else { i1 = 2; fac = Math.sqrt((summ2 - 2 * (a[1] * a[1])) / (1 - 2 * (a1 * a1))); } a[1] = a1; for (i = i1; i <= nn2; i++) { a[i] /= -fac; } } /* Check for zero range */ range = x[n - 1] - x[0]; if (range < small) { console.log("range is too small!"); return undefined; } /* Check for correct sort order on range - scaled X */ xx = x[0] / range; sx = xx; sa = -a[1]; for (i = 1, j = n - 1; i < n; j--) { xi = x[i] / range; if (xx - xi > small) { console.log("xx - xi is too big.", xx - xi); return undefined; } sx += xi; i++; if (i != j) { sa += sign(i - j) * a[Math.min(i, j)]; } xx = xi; } if (n > 5000) { console.log("n is too big!"); return undefined; } /* Calculate W statistic as squared correlation between data and coefficients */ sa /= n; sx /= n; ssa = ssx = sax = 0.; for (i = 0, j = n - 1; i < n; i++, j--) { if (i != j) { asa = sign(i - j) * a[1 + Math.min(i, j)] - sa; } else { asa = -sa; } xsx = x[i] / range - sx; ssa += asa * asa; ssx += xsx * xsx; sax += asa * xsx; } /* W1 equals (1-W) calculated to avoid excessive rounding error for W very near 1 (a potential problem in very large samples) */ ssassx = Math.sqrt(ssa * ssx); w1 = (ssassx - sax) * (ssassx + sax) / (ssa * ssx); var w = 1 - w1; /* Calculate significance level for W */ if (n == 3) { /* exact P value : */ var pi6 = 1.90985931710274; /* = 6/pi */ var stqr = 1.04719755119660; /* = asin(sqrt(3/4)) */ pw = pi6 * (Math.asin(Math.sqrt(w)) - stqr); if (pw < 0.) { pw = 0; } return w; } y = Math.log(w1); xx = Math.log(an); if (n <= 11) { gamma = poly(g, 2, an); if (y >= gamma) { pw = 1e-99; /* an "obvious" value, was 'small' which was 1e-19f */ return w; } y = -Math.log(gamma - y); m = poly(c3, 4, an); s = Math.exp(poly(c4, 4, an)); } else { /* n >= 12 */ m = poly(c5, 4, xx); s = Math.exp(poly(c6, 3, xx)); } return w; }