{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Stats initialized\n", "\n", "Linear Regression Line:\n", "\tEstimated offset is: 1.474039\n", "\tEstimated slope is: 3.000136\n", "\tR^2 is: 0.999989\n" ] } ], "source": [ "import stats from \"https://l12.xyz/x/shortcuts/raw/stat/mod.ts\";\n", "\n", "const xs = [];\n", "const ys = [];\n", "\n", "for (let i = 0; i < 100; i++) {\n", " xs.push(i);\n", " ys.push((1 + 3 * i) + Math.random());\n", "}\n", "\n", "const linreg = stats.LinearRegression(xs, ys, [], false);\n", "const r = stats.RSquared(xs, ys, [], linreg.alpha, linreg.beta);\n", "\n", "console.log(\"\\nLinear Regression Line:\");\n", "console.log(\"\\tEstimated offset is: \", linreg.alpha.toFixed(6));\n", "console.log(\"\\tEstimated slope is: \", linreg.beta.toFixed(6));\n", "console.log(\"\\tR^2 is: \", r.toFixed(6));" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "![name]()" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import plot from \"../plot/mod.ts?5\";\n", "\n", "plot.DrawHist(ys, 16, { title : \"Histogram of Y values\" });\n" ] } ], "metadata": { "kernelspec": { "display_name": "Deno", "language": "typescript", "name": "deno" }, "language_info": { "codemirror_mode": "typescript", "file_extension": ".ts", "mimetype": "text/x.typescript", "name": "typescript", "nbconvert_exporter": "script", "pygments_lexer": "typescript", "version": "5.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }