logistic reg
This commit is contained in:
parent
f7efdc6ff0
commit
a7c139790c
|
@ -10,7 +10,7 @@ type LogisticRegression struct {
|
|||
Epochs int
|
||||
Weights *mat.Dense
|
||||
Bias float64
|
||||
Losses []float64
|
||||
LearningRate float64
|
||||
}
|
||||
|
||||
func sigmoidFunction(x float64) float64 {
|
||||
|
@ -20,54 +20,75 @@ func sigmoidFunction(x float64) float64 {
|
|||
return 1. / (1. + math.Exp(-x))
|
||||
}
|
||||
|
||||
func (regr *LogisticRegression) backprop(x, y mat.Matrix) float64 {
|
||||
_, c := x.Dims()
|
||||
ry, cy := y.Dims()
|
||||
regr.Bias = 0.1
|
||||
regr.Weights = mat.NewDense(cy, c, nil)
|
||||
coef := &mat.Dense{}
|
||||
// binary cross-entropy Loss
|
||||
func (regr *LogisticRegression) Loss(yTrue, yPred mat.Matrix) float64 {
|
||||
ep := 1e-9
|
||||
y1 := &mat.Dense{}
|
||||
y1.Apply(func(i, j int, v float64) float64 {
|
||||
return v * math.Log1p(yPred.At(i, j)+ep)
|
||||
}, yTrue)
|
||||
y2 := &mat.Dense{}
|
||||
y2.Apply(func(i, j int, v float64) float64 {
|
||||
return (1. - v) * math.Log1p(1.-yPred.At(i, j)+ep)
|
||||
}, yTrue)
|
||||
sum := &mat.Dense{}
|
||||
sum.Add(y1, y2)
|
||||
w, h := yTrue.Dims()
|
||||
return mat.Sum(sum) / float64(w*h)
|
||||
}
|
||||
|
||||
coef.Mul(regr.Weights, x.T())
|
||||
func (regr *LogisticRegression) forward(X mat.Matrix) mat.Matrix {
|
||||
coef := &mat.Dense{}
|
||||
coef.Mul(X, regr.Weights)
|
||||
coef.Apply(func(i, j int, v float64) float64 {
|
||||
return sigmoidFunction(v + regr.Bias)
|
||||
}, coef)
|
||||
|
||||
diff := &mat.Dense{}
|
||||
diff.Sub(y.T(), coef)
|
||||
|
||||
w := &mat.Dense{}
|
||||
w.Mul(diff, x)
|
||||
regr.Weights = w
|
||||
|
||||
regr.Bias -= 0.1 * (mat.Sum(diff) / float64(c))
|
||||
|
||||
// Loss
|
||||
yZeroLoss := &mat.Dense{}
|
||||
yZeroLoss.Apply(func(i, j int, v float64) float64 {
|
||||
return v * math.Log1p(coef.At(i, j)+1e-9)
|
||||
}, y.T())
|
||||
|
||||
yOneLoss := &mat.Dense{}
|
||||
yOneLoss.Apply(func(i, j int, v float64) float64 {
|
||||
return (1. - v) * math.Log1p(1.-coef.At(i, j)+1e-9)
|
||||
}, y.T())
|
||||
|
||||
sum := &mat.Dense{}
|
||||
sum.Add(yZeroLoss, yOneLoss)
|
||||
return mat.Sum(sum) / float64(ry+cy)
|
||||
return coef
|
||||
}
|
||||
|
||||
func (regr *LogisticRegression) Fit(X, Y mat.Matrix, epochs int) error {
|
||||
for i := 0; i < epochs; i++ {
|
||||
loss := regr.backprop(X, Y)
|
||||
regr.Losses = append(regr.Losses, loss)
|
||||
func (regr *LogisticRegression) grad(x, yTrue, yPred mat.Matrix) (*mat.Dense, float64) {
|
||||
nSamples, _ := x.Dims()
|
||||
deriv := &mat.Dense{}
|
||||
deriv.Sub(yPred, yTrue)
|
||||
dw := &mat.Dense{}
|
||||
dw.Mul(x.T(), deriv)
|
||||
dw.Apply(func(i, j int, v float64) float64 {
|
||||
return 1. / float64(nSamples) * v
|
||||
}, dw)
|
||||
db := (1. / float64(nSamples)) * mat.Sum(deriv)
|
||||
return dw, db
|
||||
}
|
||||
|
||||
func (regr *LogisticRegression) backprop(x, y mat.Matrix) float64 {
|
||||
_, c := x.Dims()
|
||||
_, cy := y.Dims()
|
||||
if regr.Weights == nil {
|
||||
regr.Weights = mat.NewDense(c, cy, nil)
|
||||
}
|
||||
return nil
|
||||
if regr.LearningRate == 0 {
|
||||
regr.LearningRate = 0.01
|
||||
}
|
||||
yPred := regr.forward(x)
|
||||
loss := regr.Loss(y, yPred)
|
||||
dw, db := regr.grad(x, y, yPred)
|
||||
regr.Weights.Sub(regr.Weights, dw)
|
||||
regr.Bias -= regr.LearningRate * db
|
||||
return loss
|
||||
}
|
||||
|
||||
func (regr *LogisticRegression) Fit(X, Y mat.Matrix, epochs int, losses *[]float64) {
|
||||
for i := 0; i < epochs; i++ {
|
||||
regr.backprop(X, Y)
|
||||
if losses != nil {
|
||||
*losses = append(*losses, regr.Loss(Y, regr.forward(X)))
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func (regr *LogisticRegression) Predict(X mat.Matrix) mat.Matrix {
|
||||
coef := &mat.Dense{}
|
||||
coef.Mul(X, regr.Weights.T())
|
||||
coef.Mul(X, regr.Weights)
|
||||
coef.Apply(func(i, j int, v float64) float64 {
|
||||
p := sigmoidFunction(v + regr.Bias)
|
||||
if p > .5 {
|
||||
|
|
|
@ -6,16 +6,16 @@ import (
|
|||
)
|
||||
|
||||
func TestLogisticRegression(t *testing.T) {
|
||||
X := [][]float64{{10.1, 10.1, 10.1}, {2.1, 2.1, 2.1}, {10.2, 10.2, 10.2}, {2.2, 2.2, 2.2}}
|
||||
X := [][]float64{{.1, .1, .1}, {.2, .2, .2}, {.1, .1, .1}, {.2, .2, .2}}
|
||||
Y := [][]float64{{0}, {1}, {0}, {1}}
|
||||
XDense := Array2DToDense(X)
|
||||
YDense := Array2DToDense(Y)
|
||||
epochs := 10
|
||||
regr := &LogisticRegression{}
|
||||
err := regr.Fit(XDense, YDense, epochs)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
epochs := 1000
|
||||
regr := &LogisticRegression{
|
||||
LearningRate: .1,
|
||||
}
|
||||
fmt.Println(regr.Weights, regr.Bias, regr.Losses)
|
||||
fmt.Println(YDense, regr.Predict(XDense))
|
||||
regr.Fit(XDense, YDense, epochs, nil)
|
||||
fmt.Println(regr.Weights, regr.Bias)
|
||||
yPred := regr.Predict(XDense)
|
||||
fmt.Println(YDense, yPred, regr.Loss(YDense, yPred))
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue