ref: exlude notebooks from stats
This commit is contained in:
parent
f8cde668cd
commit
868bf08a07
4
.gitattributes
vendored
Normal file
4
.gitattributes
vendored
Normal file
|
@ -0,0 +1,4 @@
|
|||
notebooks/* linguist-vendored
|
||||
lib/* linguist-vendored
|
||||
Makefile linguist-vendored
|
||||
*.json linguist-vendored
|
17
encoding.ts
17
encoding.ts
|
@ -1,9 +1,10 @@
|
|||
// deno-lint-ignore-file no-explicit-any
|
||||
import pl from "npm:nodejs-polars";
|
||||
|
||||
export function oneHotEncoding(dataframe: pl.DataFrame): pl.DataFrame {
|
||||
let df = pl.DataFrame();
|
||||
for (const columnName of dataframe.columns) {
|
||||
const column = dataframe[columnName];
|
||||
const column = (dataframe as any)[columnName];
|
||||
if (!column.isNumeric()) {
|
||||
df = df.hstack(column.toDummies());
|
||||
} else {
|
||||
|
@ -19,7 +20,7 @@ export function polynomialTransform(
|
|||
interaction_only = false,
|
||||
include_bias = true,
|
||||
): pl.DataFrame {
|
||||
let polyRecords: number[][] = [];
|
||||
const polyRecords: number[][] = [];
|
||||
dataframe.map((X: number[]) => {
|
||||
polyRecords.push(
|
||||
polynomialFeatures(X, degree, interaction_only, include_bias),
|
||||
|
@ -38,7 +39,7 @@ export function polynomialFeatures(
|
|||
let prev_chunk = [...X];
|
||||
const indices = Array.from({ length: X.length }, (_, i) => i);
|
||||
for (let d = 1; d < degree; d++) {
|
||||
const new_chunk: any[] = [];
|
||||
const new_chunk: number[] = [];
|
||||
for (let i = 0; i < (interaction_only ? X.length - d : X.length); i++) {
|
||||
const v = X[i];
|
||||
const next_index = new_chunk.length;
|
||||
|
@ -71,13 +72,13 @@ export function augmentMeanForward(
|
|||
df: pl.DataFrame,
|
||||
interval = 100,
|
||||
) {
|
||||
let sorted = df.sort(feature);
|
||||
let featIdx = sorted.findIdxByName(feature);
|
||||
const sorted = df.sort(feature);
|
||||
const featIdx = sorted.findIdxByName(feature);
|
||||
let result = sorted.head(1);
|
||||
for (let i = 0; i < sorted.height; i++) {
|
||||
let p1 = sorted.row(i).at(featIdx);
|
||||
let k = (i + 1) % sorted.height;
|
||||
let p2 = sorted.row(k).at(featIdx);
|
||||
const p1 = sorted.row(i).at(featIdx);
|
||||
const k = (i + 1) % sorted.height;
|
||||
const p2 = sorted.row(k).at(featIdx);
|
||||
if (p2 - p1 > interval) {
|
||||
for (let j = 0; j < Math.round((p2 - p1) / interval) - 1; j++) {
|
||||
result = pl.concat([
|
||||
|
|
2
notebooks/deno_tinygo_wasm.ipynb
vendored
2
notebooks/deno_tinygo_wasm.ipynb
vendored
|
@ -34,7 +34,7 @@
|
|||
"console.log(\"\\nLinear Regression Line:\");\n",
|
||||
"console.log(\"\\tEstimated offset is: \", linreg.alpha.toFixed(6));\n",
|
||||
"console.log(\"\\tEstimated slope is: \", linreg.beta.toFixed(6));\n",
|
||||
"console.log(\"\\tR^2 is: \", r.toFixed(6));\n"
|
||||
"console.log(\"\\tR^2 is: \", r.toFixed(6));"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
|
Loading…
Reference in a new issue