diff --git a/lib/wasm.js b/lib/wasm_tinygo.js similarity index 100% rename from lib/wasm.js rename to lib/wasm_tinygo.js diff --git a/notebooks/deno_tinygo_wasm.ipynb b/notebooks/deno_tinygo_wasm.ipynb index 6f584b5..c76e9bc 100644 --- a/notebooks/deno_tinygo_wasm.ipynb +++ b/notebooks/deno_tinygo_wasm.ipynb @@ -12,21 +12,21 @@ "Stats initialized\n", "\n", "Linear Regression Line:\n", - "\tEstimated offset is: 1.474039\n", - "\tEstimated slope is: 3.000136\n", - "\tR^2 is: 0.999989\n" + "\tEstimated offset is: -2.258540\n", + "\tEstimated slope is: -0.024285\n", + "\tR^2 is: 0.882633\n" ] } ], "source": [ - "import stats from \"https://l12.xyz/x/shortcuts/raw/stat/mod.ts\";\n", + "import stats from \"../stat/mod.ts\";\n", "\n", "const xs = [];\n", "const ys = [];\n", "\n", "for (let i = 0; i < 100; i++) {\n", " xs.push(i);\n", - " ys.push((1 + 3 * i) + Math.random());\n", + " ys.push(1 - Math.log(2 * i + 3 + Math.random() * 10));\n", "}\n", "\n", "const linreg = stats.LinearRegression(xs, ys, [], false);\n", @@ -40,24 +40,54 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ - "![name]()" + "![name]()" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "import plot from \"../plot/mod.ts?5\";\n", + "import plot from \"../plot/mod.ts?6\";\n", "\n", - "plot.DrawHist(ys, 16, { title : \"Histogram of Y values\" });\n" + "plot.DrawPlot(\n", + " { \n", + " title: \"Test\", \n", + " //XLabel: \"X\", \n", + " YLabel: \"Y\", \n", + " width: 7.5, \n", + " height: 5 \n", + " }, \n", + " { type: \"scatter\", data: [xs, ys], legend: \"Data\", glyphStyleColor: \"#ff0000\" },\n", + " { type: \"line\", data: [xs, ys], legend: \"Line\", lineStyleColor: \"#00ff00\" },\n", + ");\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{ alpha: \u001b[33m-2.258539916346346\u001b[39m, beta: \u001b[33m-0.02428470043839821\u001b[39m }" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats.LinearRegression(xs, ys, [], false);" ] } ], diff --git a/plot/main.go b/plot/main.go index 2276bb2..2568d22 100644 --- a/plot/main.go +++ b/plot/main.go @@ -12,6 +12,7 @@ import ( func InitPlotExports(this js.Value, args []js.Value) interface{} { exports := args[0] exports.Set("Hist", js.FuncOf(src.HistPlot)) + exports.Set("Plot", js.FuncOf(src.Plot)) return nil } diff --git a/plot/mod.wasm b/plot/mod.wasm index 27176c5..56f147f 100755 Binary files a/plot/mod.wasm and b/plot/mod.wasm differ diff --git a/plot/src/Plot.go b/plot/src/Plot.go new file mode 100644 index 0000000..0ec3d15 --- /dev/null +++ b/plot/src/Plot.go @@ -0,0 +1,208 @@ +//go:build js && wasm +// +build js,wasm + +package src + +import ( + "image/color" + "syscall/js" + + "github.com/gonum/stat" + "gonum.org/v1/plot" + "gonum.org/v1/plot/plotter" + "gonum.org/v1/plot/vg" + "gonum.org/v1/plot/vg/draw" +) + +func Plot(this js.Value, args []js.Value) interface{} { + plt := plot.New() + opts := args[0] + var ( + title = opts.Get("title").String() + XLabel = opts.Get("XLabel").String() + YLabel = opts.Get("YLabel").String() + width = 7.5 + height = 4.25 + ) + if !opts.Get("width").IsUndefined() { + width = opts.Get("width").Float() + } + if !opts.Get("height").IsUndefined() { + height = opts.Get("height").Float() + } + if opts.Get("title").IsUndefined() { + title = "Plot" + } + if opts.Get("XLabel").IsUndefined() { + XLabel = "X" + } + if opts.Get("YLabel").IsUndefined() { + YLabel = "Y" + } + + plt.Title.Text = title + plt.X.Label.Text = XLabel + plt.Y.Label.Text = YLabel + plt.Add(plotter.NewGrid()) + + lines := make([]plot.Plotter, 0) + for i, arg := range args { + if i == 0 { + continue + } + PlotterLinesFromJSObject(arg, plt, &lines) + } + plt.Add(lines...) + plt.Legend.Top = true + + writer, err := plt.WriterTo(vg.Length(width)*vg.Inch, vg.Length(height)*vg.Inch, "png") + if err != nil { + panic(err) + } + b64string := WriterToBase64String(writer) + return b64string +} + +func PlotterLinesFromJSObject(object js.Value, plt *plot.Plot, plotters *[]plot.Plotter) { + var ( + typ = object.Get("type").String() + data = object.Get("data") + legend = "" + glyphColor = object.Get("glyphColor") + glyphRadius = object.Get("glypRadius") + glyphShape = object.Get("glyphShape") + lineWidth = object.Get("lineWidth") + lineColor = object.Get("lineColor") + lineDashes = object.Get("lineDashes") + ) + + shapeGlyph := func(g *draw.GlyphStyle) { + if !glyphShape.IsUndefined() { + shape := glyphShape.String() + switch shape { + case "cross": + g.Shape = draw.CrossGlyph{} + case "plus": + g.Shape = draw.PlusGlyph{} + case "ring": + g.Shape = draw.RingGlyph{} + case "square": + g.Shape = draw.SquareGlyph{} + case "triangle": + g.Shape = draw.TriangleGlyph{} + case "pyramid": + g.Shape = draw.PyramidGlyph{} + } + } + } + + radiusGlyph := func(r *vg.Length) { + if !glyphRadius.IsUndefined() { + *r = vg.Points(glyphRadius.Float()) + } + } + + dashLine := func(l *[]vg.Length) { + if !lineDashes.IsUndefined() { + w := lineDashes.Index(0).Float() + h := lineDashes.Index(1).Float() + *l = []vg.Length{vg.Points(w), vg.Points(h)} + } + } + + applyColor := func(p *color.Color, hex js.Value) { + if !hex.IsUndefined() { + *p = HexToRGBA(hex.String()) + } + } + + if !object.Get("legend").IsUndefined() { + legend = object.Get("legend").String() + } + if data.IsUndefined() { + panic("data is undefined") + } + + XYs := XYFromJSObject(data) + if XYs == nil { + XYs = XYFromJSValues(data.Index(0), data.Index(1)) + } + + switch typ { + case "scatter": + s, err := plotter.NewScatter(XYs) + if err != nil { + panic(err) + } + applyColor(&s.GlyphStyle.Color, glyphColor) + shapeGlyph(&s.GlyphStyle) + radiusGlyph(&s.GlyphStyle.Radius) + *plotters = append(*plotters, s) + if legend != "" { + plt.Legend.Add(legend, s) + } + case "line": + l, err := plotter.NewLine(XYs) + if err != nil { + panic(err) + } + applyColor(&l.LineStyle.Color, lineColor) + dashLine(&l.LineStyle.Dashes) + if !lineWidth.IsUndefined() { + l.LineStyle.Width = vg.Points(lineWidth.Float()) + } + *plotters = append(*plotters, l) + if legend != "" { + plt.Legend.Add(legend, l) + } + case "linePoints": + l, lp, err := plotter.NewLinePoints(XYs) + if err != nil { + panic(err) + } + if !lineWidth.IsUndefined() { + l.LineStyle.Width = vg.Points(lineWidth.Float()) + } + applyColor(&l.LineStyle.Color, lineColor) + dashLine(&l.LineStyle.Dashes) + shapeGlyph(&lp.GlyphStyle) + applyColor(&lp.GlyphStyle.Color, glyphColor) + radiusGlyph(&lp.GlyphStyle.Radius) + *plotters = append(*plotters, l, lp) + if legend != "" { + plt.Legend.Add(legend, l, lp) + } + case "fitLinear": + X := make([]float64, len(XYs)) + Y := make([]float64, len(XYs)) + min := XYs[0].Y + max := XYs[0].Y + for i, xy := range XYs { + X[i] = xy.X + Y[i] = xy.Y + if xy.Y < min { + min = xy.Y + } + if xy.Y > max { + max = xy.Y + } + } + a, b := stat.LinearRegression(X, Y, nil, false) + l, err := plotter.NewLine(plotter.XYs{ + {X: X[0], Y: a + b*X[0]}, + {X: X[len(X)-1], Y: a + b*X[len(X)-1]}, + }) + if err != nil { + panic(err) + } + applyColor(&l.LineStyle.Color, lineColor) + dashLine(&l.LineStyle.Dashes) + if !lineWidth.IsUndefined() { + l.LineStyle.Width = vg.Points(lineWidth.Float()) + } + *plotters = append(*plotters, l) + if legend != "" { + plt.Legend.Add(legend, l) + } + } +} diff --git a/plot/src/utils.go b/plot/src/utils.go index bc24cb0..8d01e57 100644 --- a/plot/src/utils.go +++ b/plot/src/utils.go @@ -9,6 +9,9 @@ import ( "fmt" "image/color" "io" + "syscall/js" + + "gonum.org/v1/plot/plotter" ) func WriterToBase64String(writer io.WriterTo) string { @@ -36,3 +39,23 @@ func HexToRGBA(hex string) color.RGBA { } return c } + +func XYFromJSObject(object js.Value) plotter.XYs { + var ( + x = object.Get("x") + y = object.Get("y") + ) + if x.IsUndefined() || y.IsUndefined() { + return nil + } + return XYFromJSValues(x, y) +} + +func XYFromJSValues(x, y js.Value) plotter.XYs { + xy := make(plotter.XYs, x.Length()) + for i := range xy { + xy[i].X = x.Index(i).Float() + xy[i].Y = y.Index(i).Float() + } + return xy +} diff --git a/stat/mod.ts b/stat/mod.ts index 6e49a25..d4dcba6 100644 --- a/stat/mod.ts +++ b/stat/mod.ts @@ -1,4 +1,4 @@ -import "../lib/wasm.js"; +import "../lib/wasm_tinygo.js"; import type { Stat } from "./types.ts"; // @ts-expect-error: no types