diff --git a/Makefile b/Makefile index c826d76..48fac9a 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,6 @@ dev: GOOS=js GOARCH=wasm tinygo build -o stat/mod.wasm -no-debug ./stat/main.go + GOOS=js GOARCH=wasm tinygo build -o regr/mod.wasm ./regr/main.go GOOS=js GOARCH=wasm go build -o plot/mod.wasm ./plot/main.go prod: diff --git a/notebooks/deno_tinygo_wasm.ipynb b/notebooks/deno_tinygo_wasm.ipynb deleted file mode 100644 index a92beec..0000000 --- a/notebooks/deno_tinygo_wasm.ipynb +++ /dev/null @@ -1,89 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Regressions\n", - "\n", - "$X = (0,1)$\n", - "\n", - "$Y = sin(2\\pi X)$" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/markdown": [ - "![name]()" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "// deno-lint-ignore-file\n", - "\n", - "import { display } from \"https://deno.land/x/display@v0.1.1/mod.ts\";\n", - "import pl from \"npm:nodejs-polars\";\n", - "import plot from \"../plot/mod.ts\";\n", - "\n", - "const data = await Deno.readTextFile(\"assets/X_Y_Sinusoid_Data.csv\");\n", - "const df = pl.readCSV(data, { sep: \",\" });\n", - "\n", - "const real = pl.DataFrame({ x: new Array(100).fill(0).map((_, i) => i / 100)}).select(\n", - " pl.col('x'),\n", - " pl.col('x').mul(2).mul(3.14).sin().alias('y')\n", - ");\n", - "\n", - "const draw = (x, y, title = \"Sinusoid Data\") => \n", - " plot.DrawPlot(\n", - " { \n", - " title,\n", - " width: 7,\n", - " height: 4,\n", - " XLabel: \"X\", \n", - " YLabel: \"Y\", \n", - " }, \n", - " { type: \"line\", data: [real.x, real.y], legend: \"Sinusoid\", lineDashes: [3, 4], lineColor: \"#ff8888\", lineWidth: 1 },\n", - " { type: \"scatter\", data: [x, y], legend: \"Data\", lineDashes: [3, 4], lineWidth: 2, glyphColor: \"#4444ff\", glyphShape: \"circle\" },\n", - " { type: \"trend\", data: [x, y], legend: \"Trend\", lineDashes: [4, 2], lineColor: '#aacccc', lineWidth: .5 },\n", - " );\n", - "\n", - "\n", - "draw(df.x, df.y);" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Deno", - "language": "typescript", - "name": "deno" - }, - "language_info": { - "codemirror_mode": "typescript", - "file_extension": ".ts", - "mimetype": "text/x.typescript", - "name": "typescript", - "nbconvert_exporter": "script", - "pygments_lexer": "typescript", - "version": "5.6.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/notebooks/regressions.ipynb b/notebooks/regressions.ipynb new file mode 100644 index 0000000..869464c --- /dev/null +++ b/notebooks/regressions.ipynb @@ -0,0 +1,126 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Regressions\n", + "\n", + "$X = (0,1)$\n", + "\n", + "$Y = sin(2\\pi X)$" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/markdown": [ + "![name]()" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "// deno-lint-ignore-file\n", + "\n", + "import { display } from \"https://deno.land/x/display@v0.1.1/mod.ts\";\n", + "import pl from \"npm:nodejs-polars\";\n", + "import plot from \"../plot/mod.ts\";\n", + "\n", + "const data = await Deno.readTextFile(\"assets/X_Y_Sinusoid_Data.csv\");\n", + "const df = pl.readCSV(data, { sep: \",\" });\n", + "\n", + "const real = pl.DataFrame({ x: new Array(100).fill(0).map((_, i) => i / 100)}).select(\n", + " pl.col('x'),\n", + " pl.col('x').mul(2).mul(3.14).sin().alias('y')\n", + ");\n", + "\n", + "const draw = (x, y, title = \"Sinusoid Data\") => \n", + " plot.DrawPlot(\n", + " { \n", + " title,\n", + " width: 6,\n", + " height: 3,\n", + " XLabel: \"X\", \n", + " YLabel: \"Y\", \n", + " }, \n", + " { type: \"line\", data: [real.x, real.y], legend: \"Sinusoid\", lineDashes: [3, 4], lineColor: \"#ff8888\", lineWidth: 1 },\n", + " { type: \"scatter\", data: [x, y], legend: \"Data\", lineDashes: [3, 4], lineWidth: 2, glyphColor: \"#4444ff\", glyphShape: \"circle\" },\n", + " { type: \"trend\", data: [x, y], legend: \"Trend\", lineDashes: [4, 2], lineColor: '#aacccc', lineWidth: .5 },\n", + " );\n", + "\n", + "\n", + "draw(df.x, df.y);" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/markdown": [ + "![name]()" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import { polynomialTransform } from '../encoding.ts';\n", + "import { trainTestSplit } from \"../split.ts\";\n", + "import regr from '../regr/mod.ts';\n", + "\n", + "const polyDf = df.select('x').hstack(\n", + " polynomialTransform(df.drop('y'), 36, false, false)\n", + ").hstack(df.select('y'));\n", + "\n", + "const [trainX, trainY] = [polyDf.drop('y'), polyDf.select('y')]\n", + "const linreg = regr.Linear();\n", + "linreg.fit(trainX.rows(), trainY.rows());\n", + "const predY = linreg.predict(trainX.rows());\n", + "\n", + "\n", + "plot.DrawPlot(\n", + " { \n", + " width: 7,\n", + " height: 4,\n", + " XLabel: \"X\", \n", + " YLabel: \"Y\", \n", + " }, \n", + " { type: \"line\", data: [real.x, real.y], legend: \"Sinusoid\", lineDashes: [3, 4], lineColor: \"#ff8888\", lineWidth: 1 },\n", + " { type: \"linePoints\", data: [trainX.x, df.y], legend: \"Test Data\", lineDashes: [3, 4], lineColor: \"#8888ff\", glyphColor: \"#4444ff\", glyphShape: \"circle\" },\n", + " { type: \"linePoints\", data: [trainX.x, predY], lineWidth: .5, legend: \"Predicted\", glyphColor: '#f00', glyphShape: \"pyramid\" },\n", + ");\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Deno", + "language": "typescript", + "name": "deno" + }, + "language_info": { + "codemirror_mode": "typescript", + "file_extension": ".ts", + "mimetype": "text/x.typescript", + "name": "typescript", + "nbconvert_exporter": "script", + "pygments_lexer": "typescript", + "version": "5.6.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/regr/main.go b/regr/main.go index 6dfb09d..bee5480 100644 --- a/regr/main.go +++ b/regr/main.go @@ -11,7 +11,7 @@ import ( func InitRegrExports(this js.Value, args []js.Value) interface{} { exports := args[0] - exports.Set("ABCD", js.FuncOf(src.ABCD)) + exports.Set("Linear", js.FuncOf(src.NewLinearRegressionJS)) return nil } diff --git a/stat/mod.ts b/regr/mod.ts similarity index 83% rename from stat/mod.ts rename to regr/mod.ts index d4dcba6..69a9713 100644 --- a/stat/mod.ts +++ b/regr/mod.ts @@ -1,5 +1,4 @@ import "../lib/wasm_tinygo.js"; -import type { Stat } from "./types.ts"; // @ts-expect-error: no types const go = new Go(); @@ -13,9 +12,9 @@ const wasm = wasmMmodule.instance; go.run(wasm); -const _exports = {} as Record unknown> & Stat; +const _exports = {} as Record unknown>; // @ts-ignore: no types -__InitStatExports(_exports); +__InitRegrExports(_exports); export default _exports; diff --git a/regr/mod.wasm b/regr/mod.wasm new file mode 100755 index 0000000..1ece383 Binary files /dev/null and b/regr/mod.wasm differ diff --git a/regr/src/Linear.go b/regr/src/Linear.go deleted file mode 100644 index 30cac26..0000000 --- a/regr/src/Linear.go +++ /dev/null @@ -1,16 +0,0 @@ -//go:build js && wasm -// +build js,wasm - -package src - -import "syscall/js" - -// ref: mat.Dense -// fit: solve least squares -// predict: predict y from x -// save: save model -// load: load model -// note: separate wasm/js glue -func ABCD(this js.Value, args []js.Value) interface{} { - return nil -} diff --git a/regr/src/LinearRegression.go b/regr/src/LinearRegression.go new file mode 100644 index 0000000..e9e1817 --- /dev/null +++ b/regr/src/LinearRegression.go @@ -0,0 +1,59 @@ +//go:build js && wasm +// +build js,wasm + +package src + +import ( + "syscall/js" + + "gonum.org/v1/gonum/mat" +) + +// ref: mat.Dense +// fit: solve least squares +// predict: predict y from x +// save: save model +// load: load model +// note: separate wasm/js glue + +type LinearRegression struct { + Coef *mat.Dense +} + +func (reg *LinearRegression) Fit(X, Y [][]float64) error { + XDense := Array2DToDense(X) + YDense := Array2DToDense(Y) + reg.Coef = new(mat.Dense) + reg.Coef.Solve(XDense, YDense) + return nil +} + +func (reg *LinearRegression) Predict(X [][]float64) ([]float64, error) { + YDense := new(mat.Dense) + YDense.Mul(Array2DToDense(X), reg.Coef) + return YDense.RawMatrix().Data, nil +} + +func (l *LinearRegression) Save() ([]byte, error) { + return nil, nil +} + +func (l *LinearRegression) Load(data []byte) error { + return nil +} + +func NewLinearRegressionJS(this js.Value, args []js.Value) interface{} { + reg := new(LinearRegression) + obj := js.Global().Get("Object").New() + obj.Set("fit", js.FuncOf(func(this js.Value, args []js.Value) interface{} { + X := JSFloatArray2D(args[0]) + Y := JSFloatArray2D(args[1]) + return reg.Fit(X, Y) + })) + obj.Set("predict", js.FuncOf(func(this js.Value, args []js.Value) interface{} { + X := JSFloatArray2D(args[0]) + Y, _ := reg.Predict(X) + return ToJSArray(Y) + })) + return obj +} diff --git a/regr/src/utils.go b/regr/src/utils.go new file mode 100644 index 0000000..8e4ff57 --- /dev/null +++ b/regr/src/utils.go @@ -0,0 +1,39 @@ +//go:build js && wasm +// +build js,wasm + +package src + +import ( + "syscall/js" + + "gonum.org/v1/gonum/mat" +) + +func Array2DToDense(X [][]float64) *mat.Dense { + dense := mat.NewDense(len(X), len(X[0]), nil) + for i, row := range X { + dense.SetRow(i, row) + } + return dense +} + +func JSFloatArray2D(arg js.Value) [][]float64 { + arr := make([][]float64, arg.Length()) + for i := 0; i < len(arr); i++ { + arr[i] = make([]float64, arg.Index(i).Length()) + } + for i := 0; i < len(arr); i++ { + for j := 0; j < arg.Index(i).Length(); j++ { + arr[i][j] = arg.Index(i).Index(j).Float() + } + } + return arr +} + +func ToJSArray[T any](arr []T) []interface{} { + jsArr := make([]interface{}, len(arr)) + for i, v := range arr { + jsArr[i] = v + } + return jsArr +}