diff --git a/bun.lockb b/bun.lockb index 388cbd8..d493c2c 100755 Binary files a/bun.lockb and b/bun.lockb differ diff --git a/notebooks/assets/X_Y_Sinusoid_Data.csv b/notebooks/assets/X_Y_Sinusoid_Data.csv new file mode 100644 index 0000000..ac14e6e --- /dev/null +++ b/notebooks/assets/X_Y_Sinusoid_Data.csv @@ -0,0 +1,21 @@ +x,y +0.03857092316235833,0.06639132321684607 +0.16677634653232146,1.0274832977473267 +0.1831527336532205,1.2453018088581933 +0.1873586470614216,1.0047814627724303 +0.2431156753134085,1.2641206967402017 +0.2892992815482438,0.4983300116283211 +0.3428052291614103,0.5975017977451754 +0.3454986400504001,0.629410260984959 +0.3864771696146654,0.8227045670178283 +0.4300468142111865,0.5575805722415722 +0.4844984551528021,0.5650526186807526 +0.4919289392847462,-0.3932219581301353 +0.6149324753622187,-0.912891706931243 +0.6380539847173851,-1.1282498703551047 +0.6977363851237776,-1.1104554694371696 +0.7024274240680553,-0.5703425644056388 +0.7290856206264126,-0.6202092269771708 +0.8734008431011248,-0.8732355889131802 +0.8980071182251496,-0.18747150111083224 +0.9509640316267164,-0.02581538043416365 diff --git a/notebooks/deno_tinygo_wasm.ipynb b/notebooks/deno_tinygo_wasm.ipynb index c76e9bc..a92beec 100644 --- a/notebooks/deno_tinygo_wasm.ipynb +++ b/notebooks/deno_tinygo_wasm.ipynb @@ -1,94 +1,71 @@ { "cells": [ { - "cell_type": "code", - "execution_count": 1, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Stats initialized\n", - "\n", - "Linear Regression Line:\n", - "\tEstimated offset is: -2.258540\n", - "\tEstimated slope is: -0.024285\n", - "\tR^2 is: 0.882633\n" - ] - } - ], "source": [ - "import stats from \"../stat/mod.ts\";\n", + "# Regressions\n", "\n", - "const xs = [];\n", - "const ys = [];\n", + "$X = (0,1)$\n", "\n", - "for (let i = 0; i < 100; i++) {\n", - " xs.push(i);\n", - " ys.push(1 - Math.log(2 * i + 3 + Math.random() * 10));\n", - "}\n", - "\n", - "const linreg = stats.LinearRegression(xs, ys, [], false);\n", - "const r = stats.RSquared(xs, ys, [], linreg.alpha, linreg.beta);\n", - "\n", - "console.log(\"\\nLinear Regression Line:\");\n", - "console.log(\"\\tEstimated offset is: \", linreg.alpha.toFixed(6));\n", - "console.log(\"\\tEstimated slope is: \", linreg.beta.toFixed(6));\n", - "console.log(\"\\tR^2 is: \", r.toFixed(6));" + "$Y = sin(2\\pi X)$" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ - "![name]()" + "![name]()" ] }, - "execution_count": 7, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "import plot from \"../plot/mod.ts?6\";\n", + "// deno-lint-ignore-file\n", "\n", - "plot.DrawPlot(\n", - " { \n", - " title: \"Test\", \n", - " //XLabel: \"X\", \n", - " YLabel: \"Y\", \n", - " width: 7.5, \n", - " height: 5 \n", - " }, \n", - " { type: \"scatter\", data: [xs, ys], legend: \"Data\", glyphStyleColor: \"#ff0000\" },\n", - " { type: \"line\", data: [xs, ys], legend: \"Line\", lineStyleColor: \"#00ff00\" },\n", - ");\n" + "import { display } from \"https://deno.land/x/display@v0.1.1/mod.ts\";\n", + "import pl from \"npm:nodejs-polars\";\n", + "import plot from \"../plot/mod.ts\";\n", + "\n", + "const data = await Deno.readTextFile(\"assets/X_Y_Sinusoid_Data.csv\");\n", + "const df = pl.readCSV(data, { sep: \",\" });\n", + "\n", + "const real = pl.DataFrame({ x: new Array(100).fill(0).map((_, i) => i / 100)}).select(\n", + " pl.col('x'),\n", + " pl.col('x').mul(2).mul(3.14).sin().alias('y')\n", + ");\n", + "\n", + "const draw = (x, y, title = \"Sinusoid Data\") => \n", + " plot.DrawPlot(\n", + " { \n", + " title,\n", + " width: 7,\n", + " height: 4,\n", + " XLabel: \"X\", \n", + " YLabel: \"Y\", \n", + " }, \n", + " { type: \"line\", data: [real.x, real.y], legend: \"Sinusoid\", lineDashes: [3, 4], lineColor: \"#ff8888\", lineWidth: 1 },\n", + " { type: \"scatter\", data: [x, y], legend: \"Data\", lineDashes: [3, 4], lineWidth: 2, glyphColor: \"#4444ff\", glyphShape: \"circle\" },\n", + " { type: \"trend\", data: [x, y], legend: \"Trend\", lineDashes: [4, 2], lineColor: '#aacccc', lineWidth: .5 },\n", + " );\n", + "\n", + "\n", + "draw(df.x, df.y);" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{ alpha: \u001b[33m-2.258539916346346\u001b[39m, beta: \u001b[33m-0.02428470043839821\u001b[39m }" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "stats.LinearRegression(xs, ys, [], false);" - ] + "outputs": [], + "source": [] } ], "metadata": { diff --git a/package.json b/package.json index 9d909d2..10d41a3 100644 --- a/package.json +++ b/package.json @@ -7,5 +7,8 @@ }, "peerDependencies": { "typescript": "^5.0.0" + }, + "dependencies": { + "nodejs-polars": "^0.15.0" } } diff --git a/plot/mod.wasm b/plot/mod.wasm index 56f147f..b4c33f7 100755 Binary files a/plot/mod.wasm and b/plot/mod.wasm differ diff --git a/plot/src/Plot.go b/plot/src/Plot.go index 0ec3d15..7e409a6 100644 --- a/plot/src/Plot.go +++ b/plot/src/Plot.go @@ -86,6 +86,8 @@ func PlotterLinesFromJSObject(object js.Value, plt *plot.Plot, plotters *[]plot. g.Shape = draw.PlusGlyph{} case "ring": g.Shape = draw.RingGlyph{} + case "circle": + g.Shape = draw.CircleGlyph{} case "square": g.Shape = draw.SquareGlyph{} case "triangle": @@ -172,7 +174,7 @@ func PlotterLinesFromJSObject(object js.Value, plt *plot.Plot, plotters *[]plot. if legend != "" { plt.Legend.Add(legend, l, lp) } - case "fitLinear": + case "trend": X := make([]float64, len(XYs)) Y := make([]float64, len(XYs)) min := XYs[0].Y diff --git a/regr/main.go b/regr/main.go new file mode 100644 index 0000000..6dfb09d --- /dev/null +++ b/regr/main.go @@ -0,0 +1,22 @@ +//go:build js && wasm +// +build js,wasm + +package main + +import ( + "l12.xyz/x/shortcuts/regr/src" + + "syscall/js" +) + +func InitRegrExports(this js.Value, args []js.Value) interface{} { + exports := args[0] + exports.Set("ABCD", js.FuncOf(src.ABCD)) + return nil +} + +func main() { + c := make(chan struct{}, 0) + js.Global().Set("__InitRegrExports", js.FuncOf(InitRegrExports)) + <-c +} diff --git a/regr/src/Linear.go b/regr/src/Linear.go new file mode 100644 index 0000000..30cac26 --- /dev/null +++ b/regr/src/Linear.go @@ -0,0 +1,16 @@ +//go:build js && wasm +// +build js,wasm + +package src + +import "syscall/js" + +// ref: mat.Dense +// fit: solve least squares +// predict: predict y from x +// save: save model +// load: load model +// note: separate wasm/js glue +func ABCD(this js.Value, args []js.Value) interface{} { + return nil +}