shortcuts/encoding.ts

101 lines
2.6 KiB
TypeScript
Raw Normal View History

2024-09-29 14:32:23 +00:00
// deno-lint-ignore-file no-explicit-any
2024-09-25 19:19:10 +00:00
import pl from "npm:nodejs-polars";
2024-09-27 11:20:19 +00:00
export function oneHotEncoding(dataframe: pl.DataFrame): pl.DataFrame {
2024-09-25 19:19:10 +00:00
let df = pl.DataFrame();
for (const columnName of dataframe.columns) {
2024-09-29 14:32:23 +00:00
const column = (dataframe as any)[columnName];
2024-09-25 19:19:10 +00:00
if (!column.isNumeric()) {
df = df.hstack(column.toDummies());
} else {
df = df.hstack(dataframe.select(columnName));
}
}
return df;
}
2024-09-27 11:20:19 +00:00
export function polynomialTransform(
dataframe: pl.DataFrame,
degree = 2,
interaction_only = false,
include_bias = true,
): pl.DataFrame {
2024-09-29 14:32:23 +00:00
const polyRecords: number[][] = [];
2024-09-27 11:20:19 +00:00
dataframe.map((X: number[]) => {
polyRecords.push(
polynomialFeatures(X, degree, interaction_only, include_bias),
);
});
return pl.readRecords(polyRecords);
}
export function polynomialFeatures(
X: number[],
degree = 2,
interaction_only = false,
include_bias = true,
): number[] {
let features = [...X];
let prev_chunk = [...X];
const indices = Array.from({ length: X.length }, (_, i) => i);
for (let d = 1; d < degree; d++) {
2024-09-29 14:32:23 +00:00
const new_chunk: number[] = [];
2024-09-27 11:20:19 +00:00
for (let i = 0; i < (interaction_only ? X.length - d : X.length); i++) {
const v = X[i];
const next_index = new_chunk.length;
for (let j = i + (interaction_only ? 1 : 0); j < prev_chunk.length; j++) {
new_chunk.push(v * prev_chunk[j]);
}
indices[i] = next_index;
}
features = features.concat(new_chunk);
prev_chunk = new_chunk;
}
if (include_bias) {
features.unshift(1);
}
return features;
}
/**
2024-09-27 20:37:35 +00:00
* Add rows at given interval, use average to fill values.
* Usage:
* ```ts
* let df = augmentMeanForward("price", df, 100);
* ```
2024-09-27 11:20:19 +00:00
* @param feature
* @param df
2024-09-27 20:37:35 +00:00
* @param interval
2024-09-27 11:20:19 +00:00
*/
export function augmentMeanForward(
feature: string,
df: pl.DataFrame,
interval = 100,
) {
2024-09-29 14:32:23 +00:00
const sorted = df.sort(feature);
const featIdx = sorted.findIdxByName(feature);
2024-09-27 20:37:35 +00:00
let result = sorted.head(1);
for (let i = 0; i < sorted.height; i++) {
2024-09-29 14:32:23 +00:00
const p1 = sorted.row(i).at(featIdx);
const k = (i + 1) % sorted.height;
const p2 = sorted.row(k).at(featIdx);
2024-09-27 11:20:19 +00:00
if (p2 - p1 > interval) {
2024-09-27 20:37:35 +00:00
for (let j = 0; j < Math.round((p2 - p1) / interval) - 1; j++) {
result = pl.concat([
result,
pl.concat([
result.tail(1),
sorted.slice({ offset: k, length: 1 }),
sorted.head(1).shift(-1),
])
.fillNull("mean")
.tail(1),
]);
2024-09-27 11:20:19 +00:00
}
2024-09-27 20:37:35 +00:00
} else {
2024-09-27 11:20:19 +00:00
result = pl.concat([result, sorted.slice(1, i)]);
}
}
return result;
}