Find a file
Revone e91970c09f refactor: Directly constrain the methods clear, map, and filter in the base class.
feat: Implement the clear method in DirectedGraph, UndirectedGraph, and Trie.
docs: Add SPECIFICATION.md, SPONSOR.md, and SPONSOR_zh-CN.md. Adjust badge order and add a new contributor count badge.
2024-01-06 17:50:00 +08:00
.github refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
scripts chore: red-black-tree-typed npm module added. All the sub modules READMEs are modified 2023-11-22 22:10:00 +08:00
src refactor: Directly constrain the methods clear, map, and filter in the base class. 2024-01-06 17:50:00 +08:00
test refactor: Directly constrain the methods clear, map, and filter in the base class. 2024-01-06 17:50:00 +08:00
.auto-changelog [project] quality of package improved. v1.3.6 published 2023-09-21 14:40:39 +08:00
.auto-changelog-template.hbs [project] quality of package improved. v1.3.6 published 2023-09-21 14:40:39 +08:00
.dependency-cruiser.js refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
.editorconfig refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
.eslintrc.js style: Change ESLint configuration from error type to warning type. Format the code. 2023-11-16 11:55:40 +08:00
.gitattributes test coverage report supported. Code quality enhanced and support multiple environments such as ES6 (ESModule), ES5 (CommonJS), and a single file for both browser and Node.js environments (UMD). Supported for source maps. CODE-OF-CONDUCT.md, COMMANDS.md, SECURITY.md, .gitattributes added. 2023-09-22 00:53:34 +08:00
.gitignore [benchmark] generated a performance testing report. 2023-11-02 09:24:06 +08:00
.npmignore [test] test coverage enriched to 90.37% 2023-10-29 21:52:27 +08:00
.npmrc [pkg] ci to publish 2023-09-26 20:21:20 +08:00
.prettierignore [perf] renamed tree-multiset to tree-multimap 2023-11-08 09:26:43 +08:00
.prettierrc.js style: reformated codebase 2023-11-16 10:14:14 +08:00
.travis.yml [project] Integrate the CI commands into a single command and uniformly invoke this CI command across different platforms. 2023-10-18 16:05:55 +08:00
CHANGELOG.md Refactor: Organize the access permissions of all member variables. Docs: Partial documentation for time and space complexity. 2024-01-05 15:37:28 +08:00
CODE_OF_CONDUCT.md refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
COMMANDS.md refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
CONTRIBUTING.md refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
jest.config.js refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
jest.integration.config.js [project] Decouple integration testing from the CI workflow. 2023-11-01 18:19:49 +08:00
LICENSE [BinaryTree] isMergeDuplicatedNodeById removed, [MapGraph] MapGraph added 2023-09-07 21:00:22 +08:00
package-lock.json refactor: Remove the _addTo method from BinaryTree and TreeMultiMap. 2023-12-22 19:59:38 +08:00
package.json release: 1.50.2 2024-01-04 16:28:50 +08:00
README.md refactor: Directly constrain the methods clear, map, and filter in the base class. 2024-01-06 17:50:00 +08:00
README_zh-CN.md docs: Enhance the explanation of the theory that respects computer science. 2023-12-24 17:54:51 +08:00
SECURITY.md refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
SPECIFICATION.md refactor: Directly constrain the methods clear, map, and filter in the base class. 2024-01-06 17:50:00 +08:00
SPONSOR-zh-CN.md refactor: Directly constrain the methods clear, map, and filter in the base class. 2024-01-06 17:50:00 +08:00
SPONSOR.md refactor: Directly constrain the methods clear, map, and filter in the base class. 2024-01-06 17:50:00 +08:00
tsconfig-base.json docs: Automate the writing of the table of contents for README.md. chore:Remove unused npm packages. 2023-11-21 14:16:06 +08:00
tsconfig-cjs.json refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
tsconfig-mjs.json chore: Correct the packaging configuration files of different modules. 2023-11-13 23:51:43 +08:00
tsconfig.json fix: Implemented a high-performance HashMap comparable to the native Map. All test cases are standardized using 'it' instead of 'test'. Enabled tsconfig's sourceMap configuration for correct line numbers in IDE testing. 2023-11-15 23:17:55 +08:00
tsup.config.js chore: To avoid sacrificing performance, UMD modules use ES6 style. 2023-11-20 19:24:53 +08:00
typedoc.json refactor: Remove the _addTo method from BinaryTree and TreeMultiMap. 2023-12-22 19:59:38 +08:00

data-structure-typed

npm GitHub contributors npm package minimized gzipped size (select exports) GitHub top language GITHUB Star eslint NPM npm

Why

Do you envy C++ with STL (std::), Python with collections, and Java with java.util ? Well, no need to envy anymore! JavaScript and TypeScript now have data-structure-typed.Benchmark compared with C++ STL. API standards aligned with ES6 and Java. Usability is comparable to Python

We provide data structures that are not available in JS/TS

Heap, Binary Tree, Red Black Tree, Linked List, Deque, Trie, Directed Graph, Undirected Graph, BST, AVL Tree, Priority Queue, Queue, Tree Multiset.

Performance surpasses that of native JS/TS

Method Time Taken Data Scale Belongs To Complexity
Queue.push & shift 5.83 ms 100,000 Ours O(1)
Array.push & shift 2829.59 ms 100,000 Native JS O(n)
Deque.unshift & shift 2.44 ms 100,000 Ours O(1)
Array.unshift & shift 4750.37 ms 100,000 Native JS O(n)
HashMap.set 122.51 ms 1,000,000 Ours O(1)
Map.set 223.80 ms 1,000,000 Native JS O(1)
Set.add 185.06 ms 1,000,000 Native JS O(1)

Installation and Usage

npm

npm i data-structure-typed --save

yarn

yarn add data-structure-typed
import {
  Heap, Graph, Queue, Deque, PriorityQueue, BST, Trie, DoublyLinkedList,
  AVLTree, SinglyLinkedList, DirectedGraph, RedBlackTree, TreeMultimap,
  DirectedVertex, Stack, AVLTreeNode
} from 'data-structure-typed';

Vivid Examples

AVL Tree

Try it out, or you can run your own code using our visual tool

Tree Multi Map

Try it out

Directed Graph

Try it out

Map Graph

Try it out

Code Snippets

Red Black Tree snippet

TS

import {RedBlackTree} from 'data-structure-typed';

const rbTree = new RedBlackTree<number>();
rbTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
rbTree.isAVLBalanced();    // true
rbTree.delete(10);
rbTree.isAVLBalanced();    // true
rbTree.print()
//         ___6________
//        /            \
//      ___4_       ___11________
//     /     \     /             \
//    _2_    5    _8_       ____14__
//   /   \       /   \     /        \
//   1   3       7   9    12__     15__
//                            \        \
//                           13       16

JS

import {RedBlackTree} from 'data-structure-typed';

const rbTree = new RedBlackTree();
rbTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
rbTree.isAVLBalanced();    // true
rbTree.delete(10);
rbTree.isAVLBalanced();    // true
rbTree.print()
//         ___6________
//        /            \
//      ___4_       ___11________
//     /     \     /             \
//    _2_    5    _8_       ____14__
//   /   \       /   \     /        \
//   1   3       7   9    12__     15__
//                            \        \
//                           13       16

Free conversion between data structures.

const orgArr = [6, 1, 2, 7, 5, 3, 4, 9, 8];
const orgStrArr = ["trie", "trial", "trick", "trip", "tree", "trend", "triangle", "track", "trace", "transmit"];
const entries = [[6, "6"], [1, "1"], [2, "2"], [7, "7"], [5, "5"], [3, "3"], [4, "4"], [9, "9"], [8, "8"]];

const queue = new Queue(orgArr);
queue.print();      
// [6, 1, 2, 7, 5, 3, 4, 9, 8]

const deque = new Deque(orgArr);
deque.print();      
// [6, 1, 2, 7, 5, 3, 4, 9, 8]

const sList = new SinglyLinkedList(orgArr);
sList.print();      
// [6, 1, 2, 7, 5, 3, 4, 9, 8]

const dList = new DoublyLinkedList(orgArr);
dList.print();      
// [6, 1, 2, 7, 5, 3, 4, 9, 8]

const stack = new Stack(orgArr);
stack.print();      
// [6, 1, 2, 7, 5, 3, 4, 9, 8]

const minHeap = new MinHeap(orgArr);
minHeap.print();    
// [1, 5, 2, 7, 6, 3, 4, 9, 8]

const maxPQ = new MaxPriorityQueue(orgArr);
maxPQ.print();      
// [9, 8, 4, 7, 5, 2, 3, 1, 6]

const biTree = new BinaryTree(entries);
biTree.print();
//         ___6___
//        /       \
//     ___1_     _2_
//    /     \   /   \
//   _7_    5   3   4
//  /   \
//  9   8

const bst = new BST(entries);
bst.print();
//     _____5___
//    /         \
//   _2_       _7_
//  /   \     /   \
//  1   3_    6   8_
//        \         \
//        4         9


const rbTree = new RedBlackTree(entries);
rbTree.print();
//     ___4___
//    /       \
//   _2_     _6___
//  /   \   /     \
//  1   3   5    _8_
//              /   \
//              7   9


const avl = new AVLTree(entries);
avl.print();
//     ___4___
//    /       \
//   _2_     _6___
//  /   \   /     \
//  1   3   5    _8_
//              /   \
//              7   9

const treeMulti = new TreeMultimap(entries);
treeMulti.print();
//     ___4___
//    /       \
//   _2_     _6___
//  /   \   /     \
//  1   3   5    _8_
//              /   \
//              7   9

const hm = new HashMap(entries);
hm.print()    
// [[6, "6"], [1, "1"], [2, "2"], [7, "7"], [5, "5"], [3, "3"], [4, "4"], [9, "9"], [8, "8"]]

const rbTreeH = new RedBlackTree(hm);
rbTreeH.print();
//     ___4___
//    /       \
//   _2_     _6___
//  /   \   /     \
//  1   3   5    _8_
//              /   \
//              7   9

const pq = new MinPriorityQueue(orgArr);
pq.print();   
// [1, 5, 2, 7, 6, 3, 4, 9, 8]

const bst1 = new BST(pq);
bst1.print();
//     _____5___
//    /         \
//   _2_       _7_
//  /   \     /   \
//  1   3_    6   8_
//        \         \
//        4         9

const dq1 = new Deque(orgArr);
dq1.print();    
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const rbTree1 = new RedBlackTree(dq1);
rbTree1.print();
//    _____5___
//   /         \
//  _2___     _7___
// /     \   /     \
// 1    _4   6    _9
//      /         /
//      3         8


const trie2 = new Trie(orgStrArr);
trie2.print();    
// ['trie', 'trial', 'triangle', 'trick', 'trip', 'tree', 'trend', 'track', 'trace', 'transmit']
const heap2 = new Heap(trie2, { comparator: (a, b) => Number(a) - Number(b) });
heap2.print();    
// ['transmit', 'trace', 'tree', 'trend', 'track', 'trial', 'trip', 'trie', 'trick', 'triangle']
const dq2 = new Deque(heap2);
dq2.print();      
// ['transmit', 'trace', 'tree', 'trend', 'track', 'trial', 'trip', 'trie', 'trick', 'triangle']
const entries2 = dq2.map((el, i) => [i, el]);
const avl2 = new AVLTree(entries2);
avl2.print();
//     ___3_______
//    /           \
//   _1_       ___7_
//  /   \     /     \
//  0   2    _5_    8_
//          /   \     \
//          4   6     9

Binary Search Tree (BST) snippet

import {BST, BSTNode} from 'data-structure-typed';

const bst = new BST<number>();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16;                // true
bst.has(6);                     // true
const node6 = bst.getNode(6);   // BSTNode
bst.getHeight(6) === 2;         // true
bst.getHeight() === 5;          // true
bst.getDepth(6) === 3;          // true

bst.getLeftMost()?.key === 1;   // true

bst.delete(6);
bst.get(6);                     // undefined
bst.isAVLBalanced();            // true
bst.bfs()[0] === 11;            // true
bst.print()
//       ______________11_____           
//      /                     \          
//   ___3_______            _13_____
//  /           \          /        \    
//  1_     _____8____     12      _15__
//    \   /          \           /     \ 
//    2   4_       _10          14    16
//          \     /                      
//          5_    9
//            \                          
//            7

const objBST = new BST<number, {height: number, age: number}>();

objBST.add(11, { "name": "Pablo", "age": 15 });
objBST.add(3, { "name": "Kirk", "age": 1 });

objBST.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5], [
    { "name": "Alice", "age": 15 },
    { "name": "Bob", "age": 1 },
    { "name": "Charlie", "age": 8 },
    { "name": "David", "age": 13 },
    { "name": "Emma", "age": 16 },
    { "name": "Frank", "age": 2 },
    { "name": "Grace", "age": 6 },
    { "name": "Hannah", "age": 9 },
    { "name": "Isaac", "age": 12 },
    { "name": "Jack", "age": 14 },
    { "name": "Katie", "age": 4 },
    { "name": "Liam", "age": 7 },
    { "name": "Mia", "age": 10 },
    { "name": "Noah", "age": 5 }
  ]
);

objBST.delete(11);

AVLTree snippet

import {AVLTree} from 'data-structure-typed';

const avlTree = new AVLTree<number>();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced();    // true
avlTree.delete(10);
avlTree.isAVLBalanced();    // true

Directed Graph simple snippet

import {DirectedGraph} from 'data-structure-typed';

const graph = new DirectedGraph<string>();

graph.addVertex('A');
graph.addVertex('B');

graph.hasVertex('A');       // true
graph.hasVertex('B');       // true
graph.hasVertex('C');       // false

graph.addEdge('A', 'B');
graph.hasEdge('A', 'B');    // true
graph.hasEdge('B', 'A');    // false

graph.deleteEdgeSrcToDest('A', 'B');
graph.hasEdge('A', 'B');    // false

graph.addVertex('C');

graph.addEdge('A', 'B');
graph.addEdge('B', 'C');

const topologicalOrderKeys = graph.topologicalSort(); // ['A', 'B', 'C']

Undirected Graph snippet

import {UndirectedGraph} from 'data-structure-typed';

const graph = new UndirectedGraph<string>();
graph.addVertex('A');
graph.addVertex('B');
graph.addVertex('C');
graph.addVertex('D');
graph.deleteVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'D');

const dijkstraResult = graph.dijkstra('A');
Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.key) // ['A', 'B', 'D']


API docs & Examples

API Docs

Live Examples

Examples Repository

Data Structures

Data Structure Unit Test Performance Test API Docs
Binary Tree View
Binary Search Tree (BST) View
AVL Tree View
Red Black Tree View
Tree Multimap View
Heap View
Priority Queue View
Max Priority Queue View
Min Priority Queue View
Trie View
Graph View
Directed Graph View
Undirected Graph View
Queue View
Deque View
Hash Map View
Linked List View
Singly Linked List View
Doubly Linked List View
Stack View
Segment Tree View
Binary Indexed Tree View

The corresponding relationships between data structures in different language standard libraries.

Data Structure Typed C++ STL java.util Python collections
Heap<E> - - heapq
PriorityQueue<E> priority_queue<T> PriorityQueue<E> -
Deque<E> deque<T> ArrayDeque<E> deque
Queue<E> queue<T> Queue<E> -
HashMap<K, V> unordered_map<K, V> HashMap<K, V> defaultdict
DoublyLinkedList<E> list<T> LinkedList<E> -
SinglyLinkedList<E> - - -
BinaryTree<K, V> - - -
BST<K, V> - - -
RedBlackTree<E> set<T> TreeSet<E> -
RedBlackTree<K, V> map<K, V> TreeMap<K, V> -
TreeMultimap<K, V> multimap<K, V> - -
TreeMultimap<E> multiset<T> - -
Trie - - -
DirectedGraph<V, E> - - -
UndirectedGraph<V, E> - - -
PriorityQueue<E> priority_queue<T> PriorityQueue<E> -
Array<E> vector<T> ArrayList<E> list
Stack<E> stack<T> Stack<E> -
HashMap<E> unordered_set<T> HashSet<E> set
- unordered_multiset - Counter
LinkedHashMap<K, V> - LinkedHashMap<K, V> OrderedDict
- unordered_multimap<K, V> - -
- bitset<N> - -

Built-in classic algorithms

Algorithm Function Description Iteration Type
Binary Tree DFS Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree, and then the right subtree, using recursion. Recursion + Iteration
Binary Tree BFS Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level from left to right. Iteration
Graph DFS Traverse a graph in a depth-first manner, starting from a given node, exploring along one path as deeply as possible, and backtracking to explore other paths. Used for finding connected components, paths, etc. Recursion + Iteration
Binary Tree Morris Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree traversal without additional stack or recursion. Iteration
Graph BFS Traverse a graph in a breadth-first manner, starting from a given node, first visiting nodes directly connected to the starting node, and then expanding level by level. Used for finding shortest paths, etc. Recursion + Iteration
Graph Tarjan's Algorithm Find strongly connected components in a graph, typically implemented using depth-first search. Recursion
Graph Bellman-Ford Algorithm Finding the shortest paths from a single source, can handle negative weight edges Iteration
Graph Dijkstra's Algorithm Finding the shortest paths from a single source, cannot handle negative weight edges Iteration
Graph Floyd-Warshall Algorithm Finding the shortest paths between all pairs of nodes Iteration
Graph getCycles Find all cycles in a graph or detect the presence of cycles. Recursion
Graph getCutVertexes Find cut vertices in a graph, which are nodes that, when removed, increase the number of connected components in the graph. Recursion
Graph getSCCs Find strongly connected components in a graph, which are subgraphs where any two nodes can reach each other. Recursion
Graph getBridges Find bridges in a graph, which are edges that, when removed, increase the number of connected components in the graph. Recursion
Graph topologicalSort Perform topological sorting on a directed acyclic graph (DAG) to find a linear order of nodes such that all directed edges go from earlier nodes to later nodes. Recursion

Software Engineering Design Standards

We strictly adhere to computer science theory and software development standards. Our LinkedList is designed in the traditional sense of the LinkedList data structure, and we refrain from substituting it with a Deque solely for the purpose of showcasing performance test data. However, we have also implemented a Deque based on a dynamic array concurrently.

Principle Description
Practicality Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.
Extensibility Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.
Modularization Includes data structure modularization and independent NPM packages.
Efficiency All methods provide time and space complexity, comparable to native JS performance.
Maintainability Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.
Testability Automated and customized unit testing, performance testing, and integration testing.
Portability Plans for porting to Java, Python, and C++, currently achieved to 80%.
Reusability Fully decoupled, minimized side effects, and adheres to OOP.
Security Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.
Scalability Data structure software does not involve load issues.

Benchmark

avl-tree
test nametime taken (ms)executions per secsample deviation
10,000 add randomly125.607.960.00
10,000 add & delete randomly181.225.520.00
10,000 addMany134.127.460.01
10,000 get55.0818.160.01
binary-tree-overall
test nametime taken (ms)executions per secsample deviation
10,000 RBTree add6.17161.950.00
10,000 RBTree add & delete randomly16.0762.222.62e-4
10,000 RBTree get19.8650.362.44e-4
10,000 AVLTree add134.387.440.02
10,000 AVLTree add & delete randomly207.204.830.06
10,000 AVLTree get0.981015.542.73e-5
rb-tree
test nametime taken (ms)executions per secsample deviation
100,000 add86.6511.540.02
100,000 add & delete randomly221.024.520.03
100,000 getNode190.545.250.00
100,000 add & iterator122.108.190.01
directed-graph
test nametime taken (ms)executions per secsample deviation
1,000 addVertex0.118896.512.63e-5
1,000 addEdge6.53153.210.00
1,000 getVertex0.052.08e+41.06e-5
1,000 getEdge27.5336.330.01
tarjan224.534.450.01
topologicalSort184.025.430.00
hash-map
test nametime taken (ms)executions per secsample deviation
1,000,000 set126.277.920.05
Native Map 1,000,000 set229.804.350.03
Native Set 1,000,000 add175.835.690.01
1,000,000 set & get121.348.240.03
Native Map 1,000,000 set & get290.803.440.03
Native Set 1,000,000 add & has180.715.530.01
1,000,000 ObjKey set & get357.682.800.07
Native Map 1,000,000 ObjKey set & get310.573.220.06
Native Set 1,000,000 ObjKey add & has278.423.590.05
heap
test nametime taken (ms)executions per secsample deviation
100,000 add & poll24.8540.240.00
100,000 add & dfs33.1430.170.00
10,000 fib add & pop366.112.730.00
doubly-linked-list
test nametime taken (ms)executions per secsample deviation
1,000,000 push217.984.590.07
1,000,000 unshift223.204.480.08
1,000,000 unshift & shift172.875.780.03
1,000,000 addBefore387.132.580.20
singly-linked-list
test nametime taken (ms)executions per secsample deviation
1,000,000 push & shift225.134.440.07
10,000 push & pop234.544.260.02
10,000 addBefore252.623.960.00
priority-queue
test nametime taken (ms)executions per secsample deviation
100,000 add & poll76.4913.070.00
deque
test nametime taken (ms)executions per secsample deviation
1,000,000 push13.2075.752.79e-4
1,000,000 push & pop22.2145.033.27e-4
100,000 push & shift2.26442.241.43e-4
Native Array 100,000 push & shift2329.510.430.10
100,000 unshift & shift2.16463.838.20e-5
Native Array 100,000 unshift & shift4590.640.220.33
queue
test nametime taken (ms)executions per secsample deviation
1,000,000 push49.9220.030.02
100,000 push & shift5.07197.285.86e-4
Native Array 100,000 push & shift2315.780.430.13
Native Array 100,000 push & pop4.37228.721.32e-4
stack
test nametime taken (ms)executions per secsample deviation
1,000,000 push44.5022.470.01
1,000,000 push & pop53.5718.670.02
trie
test nametime taken (ms)executions per secsample deviation
100,000 push42.9523.286.68e-4
100,000 getWords92.1110.860.01

supported module system

Now you can use it in Node.js and browser environments

CommonJS:require export.modules =

ESModule:   import export

Typescript:   import export

UMD:           var Deque = dataStructureTyped.Deque

CDN

Copy the line below into the head tag in an HTML document.

development

<script src='https://cdn.jsdelivr.net/npm/data-structure-typed/dist/umd/data-structure-typed.js'></script>

production

<script src='https://cdn.jsdelivr.net/npm/data-structure-typed/dist/umd/data-structure-typed.min.js'></script>

Copy the code below into the script tag of your HTML, and you're good to go with your development.

const {Heap} = dataStructureTyped;
const {
  BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList,
  AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap,
  DirectedVertex, AVLTreeNode
} = dataStructureTyped;