Find a file
2023-08-20 22:11:51 +08:00
.idea SinglyLinkedList reimplemented and tested 2023-08-19 23:12:16 +08:00
src Optimize the insertAfter method of SinglyLinkedList, insertAfter, insertBefore, and delete methods of DoublyLinkedList to directly add an element after a given node's reference without the need for traversal. And conducted performance test. 2023-08-20 18:52:57 +08:00
tests/unit/data-structures Optimize the insertAfter method of SinglyLinkedList, insertAfter, insertBefore, and delete methods of DoublyLinkedList to directly add an element after a given node's reference without the need for traversal. And conducted performance test. 2023-08-20 18:52:57 +08:00
.dependency-cruiser.js Circular dependencies check supported 2023-08-12 22:54:56 +08:00
.gitignore .md modified 2023-08-17 09:09:38 +08:00
.npmignore .md modified 2023-08-17 09:09:38 +08:00
jest.config.js support test by using Jest 2023-08-12 01:11:08 +08:00
package-lock.json SinglyLinkedList reimplemented and tested 2023-08-19 23:12:16 +08:00
package.json v1.17.3 published 2023-08-20 21:08:25 +08:00
README.md Demo pictures added 2023-08-20 22:11:51 +08:00
rename_clear_files.sh support test by using Jest 2023-08-12 01:11:08 +08:00
tsconfig.json

What

Brief

Javascript & TypeScript Data Structure Library.

Meticulously crafted to empower developers with a versatile set of essential data structures. Our library includes a wide range of data structures

Data Structures

Binary Tree, Binary Search Tree (BST), AVL Tree, Tree Multiset, Segment Tree, Binary Indexed Tree, Graph, Directed Graph, Undirected Graph, Linked List, Singly Linked List, Doubly Linked List, Queue, Object Deque, Array Deque, Stack, Hash, Coordinate Set, Coordinate Map, Heap, Priority Queue, Max Priority Queue, Min Priority Queue, Trie

How

API Docs

Live Examples

Live Examples

install

yarn

yarn add data-structure-typed

npm

npm install data-structure-typed

Binary Search Tree (BST) snippet

    import {BST, BSTNode} from 'data-structure-typed';

    const tree = new BST();
    expect(tree).toBeInstanceOf(BST);

    const ids = [11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5];
    tree.addMany(ids);
    expect(tree.root).toBeInstanceOf(BSTNode);
    if (tree.root) expect(tree.root.id).toBe(11);
    expect(tree.count).toBe(16);
    expect(tree.has(6)).toBe(true);

    const node6 = tree.get(6);
    expect(node6 && tree.getHeight(node6)).toBe(2);
    expect(node6 && tree.getDepth(node6)).toBe(3);

    const nodeId10 = tree.get(10, 'id');
    expect(nodeId10?.id).toBe(10);

    const nodeVal9 = tree.get(9, 'val');
    expect(nodeVal9?.id).toBe(9);

    const nodesByCount1 = tree.getNodes(1, 'count');
    expect(nodesByCount1.length).toBe(16);

    const leftMost = tree.getLeftMost();
    expect(leftMost?.id).toBe(1);

    const node15 = tree.get(15);
    const minNodeBySpecificNode = node15 && tree.getLeftMost(node15);
    expect(minNodeBySpecificNode?.id).toBe(12);

    const subTreeSum = node15 && tree.subTreeSum(node15);
    expect(subTreeSum).toBe(70);

    const lesserSum = tree.lesserSum(10);
    expect(lesserSum).toBe(45);

    expect(node15).toBeInstanceOf(BSTNode);
    if (node15 instanceof BSTNode) {
        const subTreeAdd = tree.subTreeAdd(node15, 1, 'count');
        expect(subTreeAdd).toBeDefined();
    }

    const node11 = tree.get(11);
    expect(node11).toBeInstanceOf(BSTNode);
    if (node11 instanceof BSTNode) {
        const allGreaterNodesAdded = tree.allGreaterNodesAdd(node11, 2, 'count');
        expect(allGreaterNodesAdded).toBeDefined();
    }

    const dfsInorderNodes = tree.DFS('in', 'node');
    expect(dfsInorderNodes[0].id).toBe(1);
    expect(dfsInorderNodes[dfsInorderNodes.length - 1].id).toBe(16);

    tree.balance();
    expect(tree.isBalanced()).toBe(true);

    const bfsNodesAfterBalanced = tree.BFS('node');
    expect(bfsNodesAfterBalanced[0].id).toBe(8);
    expect(bfsNodesAfterBalanced[bfsNodesAfterBalanced.length - 1].id).toBe(16);

    const removed11 = tree.remove(11, true);
    expect(removed11).toBeInstanceOf(Array);
    expect(removed11[0]).toBeDefined();
    expect(removed11[0].deleted).toBeDefined();

    if (removed11[0].deleted) expect(removed11[0].deleted.id).toBe(11);

    expect(tree.isAVLBalanced()).toBe(true);

    expect(node15 && tree.getHeight(node15)).toBe(2);

    const removed1 = tree.remove(1, true);
    expect(removed1).toBeInstanceOf(Array);
    expect(removed1[0]).toBeDefined();
    expect(removed1[0].deleted).toBeDefined();
    if (removed1[0].deleted) expect(removed1[0].deleted.id).toBe(1);

    expect(tree.isAVLBalanced()).toBe(true);

    expect(tree.getHeight()).toBe(4);

    // The code for removing these nodes (4, 10, 15, 5, 13, 3, 8, 6, 7, 9, 14) in sequence has been omitted.

    expect(tree.isAVLBalanced()).toBe(false);

    const bfsIDs = tree.BFS();
    expect(bfsIDs[0]).toBe(2);
    expect(bfsIDs[1]).toBe(12);
    expect(bfsIDs[2]).toBe(16);

    const bfsNodes = tree.BFS('node');
    expect(bfsNodes[0].id).toBe(2);
    expect(bfsNodes[1].id).toBe(12);
    expect(bfsNodes[2].id).toBe(16);

Directed Graph simple snippet

import {DirectedGraph, DirectedVertex, DirectedEdge, VertexId} from 'data-structure-typed';

let graph: DirectedGraph<DirectedVertex, DirectedEdge>;

    beforeEach(() => {
        graph = new DirectedGraph();
    });


    it('should add vertices', () => {
        const vertex1 = new DirectedVertex('A');
        const vertex2 = new DirectedVertex('B');

        graph.addVertex(vertex1);
        graph.addVertex(vertex2);

        expect(graph.hasVertex(vertex1)).toBe(true);
        expect(graph.hasVertex(vertex2)).toBe(true);
    });

    it('should add edges', () => {
        const vertex1 = new DirectedVertex('A');
        const vertex2 = new DirectedVertex('B');
        const edge = new DirectedEdge('A', 'B');

        graph.addVertex(vertex1);
        graph.addVertex(vertex2);
        graph.addEdge(edge);

        expect(graph.hasEdge('A', 'B')).toBe(true);
        expect(graph.hasEdge('B', 'A')).toBe(false);
    });

    it('should remove edges', () => {
        const vertex1 = new DirectedVertex('A');
        const vertex2 = new DirectedVertex('B');
        const edge = new DirectedEdge('A', 'B');

        graph.addVertex(vertex1);
        graph.addVertex(vertex2);
        graph.addEdge(edge);

        expect(graph.removeEdge(edge)).toBe(edge);
        expect(graph.hasEdge('A', 'B')).toBe(false);
    });

    it('should perform topological sort', () => {
        const vertexA = new DirectedVertex('A');
        const vertexB = new DirectedVertex('B');
        const vertexC = new DirectedVertex('C');
        const edgeAB = new DirectedEdge('A', 'B');
        const edgeBC = new DirectedEdge('B', 'C');

        graph.addVertex(vertexA);
        graph.addVertex(vertexB);
        graph.addVertex(vertexC);
        graph.addEdge(edgeAB);
        graph.addEdge(edgeBC);

        const topologicalOrder = graph.topologicalSort();
        if (topologicalOrder) expect(topologicalOrder.map(v => v.id)).toEqual(['A', 'B', 'C']);
    });

Directed Graph complex snippet

import {DirectedGraph, DirectedVertex, DirectedEdge, VertexId} from 'data-structure-typed';

class MyVertex extends DirectedVertex {
    private _data: string;
    get data(): string {
        return this._data;
    }
    set data(value: string) {
        this._data = value;
    }

    constructor(id: VertexId, data: string) {
        super(id);
        this._data = data;
    }
}

class MyEdge extends DirectedEdge {
    private _data: string;
    get data(): string {
        return this._data;
    }
    set data(value: string) {
        this._data = value;
    }

    constructor(v1: VertexId, v2: VertexId, weight: number, data: string) {
        super(v1, v2, weight);
        this._data = data;
    }
}

describe('DirectedGraph Test3', () => {
    const myGraph = new DirectedGraph<MyVertex, MyEdge>();

    it('should test graph operations', () => {
        const vertex1 = new MyVertex(1, 'data1');
        const vertex2 = new MyVertex(2, 'data2');
        const vertex3 = new MyVertex(3, 'data3');
        const vertex4 = new MyVertex(4, 'data4');
        const vertex5 = new MyVertex(5, 'data5');
        const vertex6 = new MyVertex(6, 'data6');
        const vertex7 = new MyVertex(7, 'data7');
        const vertex8 = new MyVertex(8, 'data8');
        const vertex9 = new MyVertex(9, 'data9');
        myGraph.addVertex(vertex1);
        myGraph.addVertex(vertex2);
        myGraph.addVertex(vertex3);
        myGraph.addVertex(vertex4);
        myGraph.addVertex(vertex5);
        myGraph.addVertex(vertex6);
        myGraph.addVertex(vertex7);
        myGraph.addVertex(vertex8);
        myGraph.addVertex(vertex9);

        myGraph.addEdge(new MyEdge(1, 2, 10, 'edge-data1-2'));
        myGraph.addEdge(new MyEdge(2, 1, 20, 'edge-data2-1'));

        expect(myGraph.getEdge(1, 2)).toBeTruthy();
        expect(myGraph.getEdge(2, 1)).toBeTruthy();
        expect(myGraph.getEdge(1, '100')).toBeFalsy();

        myGraph.removeEdgeBetween(1, 2);
        expect(myGraph.getEdge(1, 2)).toBeFalsy();

        myGraph.addEdge(new MyEdge(3, 1, 3, 'edge-data-3-1'));
        myGraph.addEdge(new MyEdge(1, 9, 19, 'edge-data1-9'));
        myGraph.addEdge(new MyEdge(9, 7, 97, 'edge-data9-7'));
        myGraph.addEdge(new MyEdge(7, 9, 79, 'edge-data7-9'));
        myGraph.addEdge(new MyEdge(1, 4, 14, 'edge-data1-4'));
        myGraph.addEdge(new MyEdge(4, 7, 47, 'edge-data4-7'));
        myGraph.addEdge(new MyEdge(1, 2, 12, 'edge-data1-2'));
        myGraph.addEdge(new MyEdge(2, 3, 23, 'edge-data2-3'));
        myGraph.addEdge(new MyEdge(3, 5, 35, 'edge-data3-5'));
        myGraph.addEdge(new MyEdge(5, 7, 57, 'edge-data5-7'));
        myGraph.addEdge(new MyEdge(7, 3, 73, 'edge-data7-3'));
        
        const topologicalSorted = myGraph.topologicalSort();
        expect(topologicalSorted).toBeNull();

        const minPath1to7 = myGraph.getMinPathBetween(1, 7);
        expect(minPath1to7).toBeInstanceOf(Array);
        if (minPath1to7 && minPath1to7.length > 0) {
            expect(minPath1to7).toHaveLength(3);
            expect(minPath1to7[0]).toBeInstanceOf(MyVertex);
            expect(minPath1to7[0].id).toBe(1);
            expect(minPath1to7[1].id).toBe(9);
            expect(minPath1to7[2].id).toBe(7);
        }

        const fordResult1 = myGraph.bellmanFord(1);
        expect(fordResult1).toBeTruthy();
        expect(fordResult1.hasNegativeCycle).toBeUndefined();
        const {distMap, preMap, paths, min, minPath} = fordResult1;
        expect(distMap).toBeInstanceOf(Map);
        expect(distMap.size).toBe(9);
        expect(distMap.get(vertex1)).toBe(0);
        expect(distMap.get(vertex2)).toBe(12);
        expect(distMap.get(vertex3)).toBe(35);
        expect(distMap.get(vertex4)).toBe(14);
        expect(distMap.get(vertex5)).toBe(70);
        expect(distMap.get(vertex6)).toBe(Infinity);
        expect(distMap.get(vertex7)).toBe(61);
        expect(distMap.get(vertex8)).toBe(Infinity);
        expect(distMap.get(vertex9)).toBe(19);

        expect(preMap).toBeInstanceOf(Map);
        expect(preMap.size).toBe(0);

        expect(paths).toBeInstanceOf(Array);
        expect(paths.length).toBe(0);
        expect(min).toBe(Infinity);
        expect(minPath).toBeInstanceOf(Array);
        
        const floydResult = myGraph.floyd();
        expect(floydResult).toBeTruthy();
        if (floydResult) {
            const {costs, predecessor} = floydResult;
            expect(costs).toBeInstanceOf(Array);
            expect(costs.length).toBe(9);
            expect(costs[0]).toEqual([32, 12, 35, 14, 70, Infinity, 61, Infinity, 19]);
            expect(costs[1]).toEqual([20, 32, 23, 34, 58, Infinity, 81, Infinity, 39]);
            expect(costs[2]).toEqual([3, 15, 38, 17, 35, Infinity, 64, Infinity, 22]);
            expect(costs[3]).toEqual([123, 135, 120, 137, 155, Infinity, 47, Infinity, 126]);
            expect(costs[4]).toEqual([133, 145, 130, 147, 165, Infinity, 57, Infinity, 136]);
            expect(costs[5]).toEqual([Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity]);
            expect(costs[6]).toEqual([76, 88, 73, 90, 108, Infinity, 137, Infinity, 79]);
            expect(costs[7]).toEqual([Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity]);
            expect(costs[8]).toEqual([173, 185, 170, 187, 205, Infinity, 97, Infinity, 176]);

            expect(predecessor).toBeInstanceOf(Array);
            expect(predecessor.length).toBe(9);
            expect(predecessor[0]).toEqual([vertex2, null, vertex2, null, vertex3, null, vertex4, null, null]);
            expect(predecessor[1]).toEqual([null, vertex1, null, vertex1, vertex3, null, vertex4, null, vertex1]);
            expect(predecessor[5]).toEqual([null, null, null, null, null, null, null, null, null]);
            expect(predecessor[7]).toEqual([null, null, null, null, null, null, null, null, null]);
            expect(predecessor[8]).toEqual([vertex7, vertex7, vertex7, vertex7, vertex7, null, null, null, vertex7]);
        }

        const dijkstraRes12tt = myGraph.dijkstra(1, 2, true, true);
        expect(dijkstraRes12tt).toBeTruthy();
        if (dijkstraRes12tt) {
            const {distMap, minDist, minPath, paths, preMap, seen} = dijkstraRes12tt;
            expect(distMap).toBeInstanceOf(Map);
            expect(distMap.size).toBe(9);
            expect(distMap.get(vertex1)).toBe(0);
            expect(distMap.get(vertex2)).toBe(12);
            expect(distMap.get(vertex3)).toBe(Infinity);
            expect(distMap.get(vertex4)).toBe(14);
            expect(distMap.get(vertex5)).toBe(Infinity);
            expect(distMap.get(vertex6)).toBe(Infinity);
            expect(distMap.get(vertex7)).toBe(Infinity);
            expect(distMap.get(vertex8)).toBe(Infinity);
            expect(distMap.get(vertex9)).toBe(19);

            expect(minDist).toBe(12);
            expect(minPath).toBeInstanceOf(Array);
            expect(minPath.length).toBe(2);
            expect(minPath[0]).toBe(vertex1);
            expect(minPath[1]).toBe(vertex2);

            expect(paths).toBeInstanceOf(Array);
            expect(paths.length).toBe(9);
            expect(paths[0]).toBeInstanceOf(Array);
            expect(paths[0][0]).toBe(vertex1);

            expect(paths[1]).toBeInstanceOf(Array);
            expect(paths[1][0]).toBe(vertex1);
            expect(paths[1][1]).toBe(vertex2);

            expect(paths[2]).toBeInstanceOf(Array);
            expect(paths[2][0]).toBe(vertex3);
            expect(paths[3]).toBeInstanceOf(Array);
            expect(paths[3][0]).toBe(vertex1);
            expect(paths[3][1]).toBe(vertex4);
            expect(paths[4]).toBeInstanceOf(Array);
            expect(paths[4][0]).toBe(vertex5);

            expect(paths[5]).toBeInstanceOf(Array);
            expect(paths[5][0]).toBe(vertex6);
            expect(paths[6]).toBeInstanceOf(Array);
            expect(paths[6][0]).toBe(vertex7);
            expect(paths[7]).toBeInstanceOf(Array);
            expect(paths[7][0]).toBe(vertex8);
            expect(paths[8]).toBeInstanceOf(Array);
            expect(paths[8][0]).toBe(vertex1);
            expect(paths[8][1]).toBe(vertex9);
        }
    });
});

API docs

data-structure-typed

Examples Repository

Why

Complexities

performance of Big O

Big O Notation Type Computations for 10 elements Computations for 100 elements Computations for 1000 elements
O(1) Constant 1 1 1
O(log N) Logarithmic 3 6 9
O(N) Linear 10 100 1000
O(N log N) n log(n) 30 600 9000
O(N^2) Quadratic 100 10000 1000000
O(2^N) Exponential 1024 1.26e+29 1.07e+301
O(N!) Factorial 3628800 9.3e+157 4.02e+2567

Data Structure Complexity

Data Structure Access Search Insertion Deletion Comments
Array 1 n n n
Stack n n 1 1
Queue n n 1 1
Linked List n n 1 n
Hash Table - n n n In case of perfect hash function costs would be O(1)
Binary Search Tree n n n n In case of balanced tree costs would be O(log(n))
B-Tree log(n) log(n) log(n) log(n)
Red-Black Tree log(n) log(n) log(n) log(n)
AVL Tree log(n) log(n) log(n) log(n)
Bloom Filter - 1 1 - False positives are possible while searching

Sorting Complexity

Name Best Average Worst Memory Stable Comments
Bubble sort n n2 n2 1 Yes
Insertion sort n n2 n2 1 Yes
Selection sort n2 n2 n2 1 No
Heap sort n log(n) n log(n) n log(n) 1 No
Merge sort n log(n) n log(n) n log(n) n Yes
Quick sort n log(n) n log(n) n2 log(n) No Quicksort is usually done in-place with O(log(n)) stack space
Shell sort n log(n) depends on gap sequence n (log(n))2 1 No
Counting sort n + r n + r n + r n + r Yes r - biggest number in array
Radix sort n * k n * k n * k n + k Yes k - length of longest key

overview diagram

complexities

complexities of data structures