Find a file
2023-08-31 22:32:11 +08:00
.idea first commit 2023-08-30 11:44:27 +08:00
src remove assets for reduce the size of package 2023-08-31 22:32:11 +08:00
tests Rework the add, addMany, and fill methods of AbstractBinaryTree. Refactor the AddMany method of TreeMultiset. Fix the bug in TreeMultiset where all Node counts become 1 after calling the perfectBalance method. Remove the unnecessary configuration of autoIncrementId. 2023-08-31 20:02:31 +08:00
.dependency-cruiser.js Circular dependencies check supported 2023-08-12 22:54:56 +08:00
.gitignore Successfully implemented recursive type inference for the BinaryTreeNode type by passing the node constructor through the constructor, effectively addressing the type inconsistency caused by invoking parent class methods after inheritance. 2023-08-22 22:50:16 +08:00
.npmignore Split the data structures and publish all the individual packages to NPM. 2023-08-30 17:31:49 +08:00
jest.config.js The APIs of Heap and Priority Queue got optimized 2023-08-31 00:18:13 +08:00
package-lock.json Rework the add, addMany, and fill methods of AbstractBinaryTree. Refactor the AddMany method of TreeMultiset. Fix the bug in TreeMultiset where all Node counts become 1 after calling the perfectBalance method. Remove the unnecessary configuration of autoIncrementId. 2023-08-31 20:02:31 +08:00
package.json remove assets for reduce the size of package 2023-08-31 22:32:11 +08:00
README.md images removed, heap docs revised 2023-08-31 00:50:23 +08:00
rename_clear_files.sh support test by using Jest 2023-08-12 01:11:08 +08:00
tsconfig.json Tidying up the code and identifying any further requirements that need to be marked as TODO. 2023-08-31 22:25:41 +08:00

What

Brief

Javascript & TypeScript Data Structure collections.

Algorithms

DFS, DFSIterative, BFS, morris, Bellman-Ford Algorithm, Dijkstra's Algorithm, Floyd-Warshall Algorithm, Tarjan's Algorithm. Listed only a few out, you can discover more in API docs

Code design

By strictly adhering to object-oriented design (BinaryTree -> BST -> AVLTree -> TreeMultiset), you can seamlessly inherit the existing data structures to implement the customized ones you need. Object-oriented design stands as the optimal approach to data structure design.

How

npm

npm install data-structure-typed

install

yarn

yarn add data-structure-typed

Binary Search Tree (BST) snippet

TS

    import {BST, BSTNode} from 'data-structure-typed';

    const bst = new BST();
    bst.add(11);
    bst.add(3);
    bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
    bst.size === 16;        // true
    bst.has(6);             // true
    const node6 = bst.get(6);
    bst.getHeight(6) === 2; // true
    bst.getHeight() === 5;  // true
    bst.getDepth(6) === 3;  // true
    const leftMost = bst.getLeftMost();
    leftMost?.id === 1;     // true
    expect(leftMost?.id).toBe(1);
    bst.remove(6);
    bst.get(6);             // null
    bst.isAVLBalanced();    // true or false
    const bfsIDs = bst.BFS();
    bfsIDs[0] === 11;   // true
    expect(bfsIDs[0]).toBe(11);
    
    const objBST = new BST<BSTNode<{ id: number, keyA: number }>>();
    objBST.add(11, {id: 11, keyA: 11});
    objBST.add(3, {id: 3, keyA: 3});
    
    objBST.addMany([{id: 15, keyA: 15}, {id: 1, keyA: 1}, {id: 8, keyA: 8},
        {id: 13, keyA: 13}, {id: 16, keyA: 16}, {id: 2, keyA: 2},
        {id: 6, keyA: 6}, {id: 9, keyA: 9}, {id: 12, keyA: 12},
        {id: 14, keyA: 14}, {id: 4, keyA: 4}, {id: 7, keyA: 7},
        {id: 10, keyA: 10}, {id: 5, keyA: 5}]);
    
    objBST.remove(11);
    
    
    const avlTree = new AVLTree();
    avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
    avlTree.isAVLBalanced();    // true
    avlTree.remove(10);
    avlTree.isAVLBalanced();    // true

JS

    const {BST, BSTNode} = require('data-structure-typed');

    const bst = new BST();
    bst.add(11);
    bst.add(3);
    bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
    bst.size === 16;        // true
    bst.has(6);             // true
    const node6 = bst.get(6);
    bst.getHeight(6) === 2; // true
    bst.getHeight() === 5;  // true
    bst.getDepth(6) === 3;  // true
    const leftMost = bst.getLeftMost();
    leftMost?.id === 1;     // true
    expect(leftMost?.id).toBe(1);
    bst.remove(6);
    bst.get(6);             // null
    bst.isAVLBalanced();    // true or false
    const bfsIDs = bst.BFS();
    bfsIDs[0] === 11;   // true
    expect(bfsIDs[0]).toBe(11);
    
    const objBST = new BST();
    objBST.add(11, {id: 11, keyA: 11});
    objBST.add(3, {id: 3, keyA: 3});
    
    objBST.addMany([{id: 15, keyA: 15}, {id: 1, keyA: 1}, {id: 8, keyA: 8},
        {id: 13, keyA: 13}, {id: 16, keyA: 16}, {id: 2, keyA: 2},
        {id: 6, keyA: 6}, {id: 9, keyA: 9}, {id: 12, keyA: 12},
        {id: 14, keyA: 14}, {id: 4, keyA: 4}, {id: 7, keyA: 7},
        {id: 10, keyA: 10}, {id: 5, keyA: 5}]);
    
    objBST.remove(11);
    
    
    const avlTree = new AVLTree();
    avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
    avlTree.isAVLBalanced();    // true
    avlTree.remove(10);
    avlTree.isAVLBalanced();    // true

Directed Graph simple snippet

TS or JS

import {DirectedGraph} from 'data-structure-typed';

    const graph = new DirectedGraph();
    
    graph.addVertex('A');
    graph.addVertex('B');
    
    graph.hasVertex('A');       // true
    graph.hasVertex('B');       // true
    graph.hasVertex('C');       // false
    
    graph.addEdge('A', 'B');
    graph.hasEdge('A', 'B'); // true
    graph.hasEdge('B', 'A'); // false
    
    graph.removeEdgeSrcToDest('A', 'B');
    graph.hasEdge('A', 'B');    // false
    
    graph.addVertex('C');
    
    graph.addEdge('A', 'B');
    graph.addEdge('B', 'C');
    
    const topologicalOrderIds = graph.topologicalSort(); // ['A', 'B', 'C']

Undirected Graph snippet

TS or JS

import {UndirectedGraph} from 'data-structure-typed';

    const graph = new UndirectedGraph();
    graph.addVertex('A');
    graph.addVertex('B');
    graph.addVertex('C');
    graph.addVertex('D');
    graph.removeVertex('C');
    graph.addEdge('A', 'B');
    graph.addEdge('B', 'D');
    
    const dijkstraResult = graph.dijkstra('A');
    Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.id) // ['A', 'B', 'D']

Data Structures

Data Structure Unit Test Performance Test API Documentation Implemented
Binary Tree Binary Tree
Binary Search Tree (BST) BST
AVL Tree AVLTree
Tree Multiset TreeMultiset
Segment Tree SegmentTree
Binary Indexed Tree BinaryIndexedTree
Graph AbstractGraph
Directed Graph DirectedGraph
Undirected Graph UndirectedGraph
Linked List SinglyLinkedList
Singly Linked List SinglyLinkedList
Doubly Linked List DoublyLinkedList
Queue Queue
Object Deque ObjectDeque
Array Deque ArrayDeque
Stack Stack
Coordinate Set CoordinateSet
Coordinate Map CoordinateMap
Heap Heap
Priority Queue PriorityQueue
Max Priority Queue MaxPriorityQueue
Min Priority Queue MinPriorityQueue
Trie Trie

API docs & Examples

API Docs

Live Examples

Live Examples

Examples Repository

Why

Complexities

performance of Big O

Big O Notation Type Computations for 10 elements Computations for 100 elements Computations for 1000 elements
O(1) Constant 1 1 1
O(log N) Logarithmic 3 6 9
O(N) Linear 10 100 1000
O(N log N) n log(n) 30 600 9000
O(N^2) Quadratic 100 10000 1000000
O(2^N) Exponential 1024 1.26e+29 1.07e+301
O(N!) Factorial 3628800 9.3e+157 4.02e+2567

Data Structure Complexity

Data Structure Access Search Insertion Deletion Comments
Array 1 n n n
Stack n n 1 1
Queue n n 1 1
Linked List n n 1 n
Hash Table - n n n In case of perfect hash function costs would be O(1)
Binary Search Tree n n n n In case of balanced tree costs would be O(log(n))
B-Tree log(n) log(n) log(n) log(n)
Red-Black Tree log(n) log(n) log(n) log(n)
AVL Tree log(n) log(n) log(n) log(n)
Bloom Filter - 1 1 - False positives are possible while searching

Sorting Complexity

Name Best Average Worst Memory Stable Comments
Bubble sort n n2 n2 1 Yes
Insertion sort n n2 n2 1 Yes
Selection sort n2 n2 n2 1 No
Heap sort n log(n) n log(n) n log(n) 1 No
Merge sort n log(n) n log(n) n log(n) n Yes
Quick sort n log(n) n log(n) n2 log(n) No Quicksort is usually done in-place with O(log(n)) stack space
Shell sort n log(n) depends on gap sequence n (log(n))2 1 No
Counting sort n + r n + r n + r n + r Yes r - biggest number in array
Radix sort n * k n * k n * k n + k Yes k - length of longest key

overview diagram

complexities

complexities of data structures