Find a file
2023-11-20 13:03:39 +08:00
.github [project] Integrate the CI commands into a single command and uniformly invoke this CI command across different platforms. 2023-10-18 16:05:55 +08:00
scripts chore: Check if the latest version of the npm package is already installable. 2023-11-19 17:48:54 +08:00
src refactor: HashMap supports custom hash functions. 2023-11-20 13:03:39 +08:00
test refactor: HashMap supports custom hash functions. 2023-11-20 13:03:39 +08:00
.auto-changelog [project] quality of package improved. v1.3.6 published 2023-09-21 14:40:39 +08:00
.auto-changelog-template.hbs [project] quality of package improved. v1.3.6 published 2023-09-21 14:40:39 +08:00
.dependency-cruiser.js [test] test coverage enriched to 90.37% 2023-10-29 21:52:27 +08:00
.editorconfig style: reformated codebase 2023-11-16 10:14:14 +08:00
.eslintrc.js style: Change ESLint configuration from error type to warning type. Format the code. 2023-11-16 11:55:40 +08:00
.gitattributes test coverage report supported. Code quality enhanced and support multiple environments such as ES6 (ESModule), ES5 (CommonJS), and a single file for both browser and Node.js environments (UMD). Supported for source maps. CODE-OF-CONDUCT.md, COMMANDS.md, SECURITY.md, .gitattributes added. 2023-09-22 00:53:34 +08:00
.gitignore [benchmark] generated a performance testing report. 2023-11-02 09:24:06 +08:00
.npmignore [test] test coverage enriched to 90.37% 2023-10-29 21:52:27 +08:00
.npmrc [pkg] ci to publish 2023-09-26 20:21:20 +08:00
.prettierignore [perf] renamed tree-multiset to tree-multimap 2023-11-08 09:26:43 +08:00
.prettierrc.js style: reformated codebase 2023-11-16 10:14:14 +08:00
.travis.yml [project] Integrate the CI commands into a single command and uniformly invoke this CI command across different platforms. 2023-10-18 16:05:55 +08:00
CHANGELOG.md refactor: Eliminate unnecessary data structures. test: Add performance comparison tests with native Map and Set. 2023-11-20 09:51:34 +08:00
CODE_OF_CONDUCT.md [pkg] config files renamed. v1.33.0 2023-09-25 11:16:04 +08:00
COMMANDS.md feat: The performance report generator supports parameter filtering commands, which can be used to run specific tests individually. It generates individual performance comparison reports. Enrich the COMMANDS.md document. 2023-11-16 21:07:00 +08:00
CONTRIBUTING.md docs: Conventional Commits of CONTRIBUTING.md, Built-in classic algorithms enriched 2023-11-08 20:26:07 +08:00
jest.config.js [test] coverage directories specified 2023-11-05 21:37:01 +08:00
jest.integration.config.js [project] Decouple integration testing from the CI workflow. 2023-11-01 18:19:49 +08:00
LICENSE [BinaryTree] isMergeDuplicatedNodeById removed, [MapGraph] MapGraph added 2023-09-07 21:00:22 +08:00
package-lock.json fix: Removed unused enums. style: Beautified text color output of the performance report generator console. 2023-11-14 21:41:20 +08:00
package.json chore: run cjs, mjs build before test performance 2023-11-19 21:16:20 +08:00
README.md refacor: If individual performance test, not to replace content in README.md 2023-11-19 21:26:04 +08:00
SECURITY.md test coverage report supported. Code quality enhanced and support multiple environments such as ES6 (ESModule), ES5 (CommonJS), and a single file for both browser and Node.js environments (UMD). Supported for source maps. CODE-OF-CONDUCT.md, COMMANDS.md, SECURITY.md, .gitattributes added. 2023-09-22 00:53:34 +08:00
tsconfig-base.json chore: Correct the packaging configuration files of different modules. 2023-11-13 23:51:43 +08:00
tsconfig-cjs.json chore: Correct the packaging configuration files of different modules. 2023-11-13 23:51:43 +08:00
tsconfig-mjs.json chore: Correct the packaging configuration files of different modules. 2023-11-13 23:51:43 +08:00
tsconfig.json fix: Implemented a high-performance HashMap comparable to the native Map. All test cases are standardized using 'it' instead of 'test'. Enabled tsconfig's sourceMap configuration for correct line numbers in IDE testing. 2023-11-15 23:17:55 +08:00
tsup.config.js chore: Correct the packaging configuration files of different modules. 2023-11-13 23:51:43 +08:00

Data Structure Typed

npm npm npm package minimized gzipped size (select exports) GitHub top language eslint NPM

Data Structures of Javascript & TypeScript.

Do you envy C++ with STL, Python with collections, and Java with java.util ? Well, no need to envy anymore! JavaScript and TypeScript now have data-structure-typed.

Now you can use this library in Node.js and browser environments in CommonJS(require export.modules = ), ESModule(import export), Typescript(import export), UMD(var Queue = dataStructureTyped.Queue)

Installation and Usage

npm

npm i data-structure-typed

yarn

yarn add data-structure-typed
import {
  BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList,
  AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap,
  DirectedVertex, AVLTreeNode
} from 'data-structure-typed';

CDN

Copy the line below into the head tag in an HTML document.

development

<script src='https://cdn.jsdelivr.net/npm/data-structure-typed/dist/umd/data-structure-typed.js'></script>

production

<script src='https://cdn.jsdelivr.net/npm/data-structure-typed/dist/umd/data-structure-typed.min.js'></script>

Copy the code below into the script tag of your HTML, and you're good to go with your development work.

const {Heap} = dataStructureTyped;
const {
  BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList,
  AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap,
  DirectedVertex, AVLTreeNode
} = dataStructureTyped;

Software Engineering Design Standards

Principle Description
Practicality Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.
Extensibility Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.
Modularization Includes data structure modularization and independent NPM packages.
Efficiency All methods provide time and space complexity, comparable to native JS performance.
Maintainability Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.
Testability Automated and customized unit testing, performance testing, and integration testing.
Portability Plans for porting to Java, Python, and C++, currently achieved to 80%.
Reusability Fully decoupled, minimized side effects, and adheres to OOP.
Security Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.
Scalability Data structure software does not involve load issues.

Vivid Examples

Binary Tree

Try it out, or you can execute your own code using our visual tool

Binary Tree DFS

Try it out, or you can execute your own code using our visual tool

AVL Tree

Try it out, or you can execute your own code using our visual tool

Tree Multi Map

Try it out, or you can execute your own code using our visual tool

Matrix

Try it out, or you can execute your own code using our visual tool

Directed Graph

Try it out, or you can execute your own code using our visual tool

Map Graph

Try it out, or you can execute your own code using our visual tool

Code Snippets

Binary Search Tree (BST) snippet

TS

import {BST, BSTNode} from 'data-structure-typed';

const bst = new BST();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16;                // true
bst.has(6);                     // true
const node6 = bst.getNode(6);   // BSTNode
bst.getHeight(6) === 2;         // true
bst.getHeight() === 5;          // true
bst.getDepth(6) === 3;          // true

bst.getLeftMost()?.key === 1;   // true

bst.delete(6);
bst.get(6);                     // undefined
bst.isAVLBalanced();            // true
bst.bfs()[0] === 11;            // true

const objBST = new BST<{height: number, age: number}>();

objBST.add(11, { "name": "Pablo", "age": 15 });
objBST.add(3, { "name": "Kirk", "age": 1 });

objBST.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5], [
    { "name": "Alice", "age": 15 },
    { "name": "Bob", "age": 1 },
    { "name": "Charlie", "age": 8 },
    { "name": "David", "age": 13 },
    { "name": "Emma", "age": 16 },
    { "name": "Frank", "age": 2 },
    { "name": "Grace", "age": 6 },
    { "name": "Hannah", "age": 9 },
    { "name": "Isaac", "age": 12 },
    { "name": "Jack", "age": 14 },
    { "name": "Katie", "age": 4 },
    { "name": "Liam", "age": 7 },
    { "name": "Mia", "age": 10 },
    { "name": "Noah", "age": 5 }
  ]
);

objBST.delete(11);

JS

const {BST, BSTNode} = require('data-structure-typed');

const bst = new BST();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16;                // true
bst.has(6);                     // true
const node6 = bst.getNode(6);
bst.getHeight(6) === 2;         // true
bst.getHeight() === 5;          // true
bst.getDepth(6) === 3;          // true
const leftMost = bst.getLeftMost();
leftMost?.key === 1;            // true

bst.delete(6);
bst.get(6);                     // undefined
bst.isAVLBalanced();            // true or false
const bfsIDs = bst.bfs();
bfsIDs[0] === 11;               // true

AVLTree snippet

TS

import {AVLTree} from 'data-structure-typed';

const avlTree = new AVLTree();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced();    // true
avlTree.delete(10);
avlTree.isAVLBalanced();    // true

JS

const {AVLTree} = require('data-structure-typed');

const avlTree = new AVLTree();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced();    // true
avlTree.delete(10);
avlTree.isAVLBalanced();    // true

Directed Graph simple snippet

TS or JS

import {DirectedGraph} from 'data-structure-typed';

const graph = new DirectedGraph();

graph.addVertex('A');
graph.addVertex('B');

graph.hasVertex('A');       // true
graph.hasVertex('B');       // true
graph.hasVertex('C');       // false

graph.addEdge('A', 'B');
graph.hasEdge('A', 'B');    // true
graph.hasEdge('B', 'A');    // false

graph.deleteEdgeSrcToDest('A', 'B');
graph.hasEdge('A', 'B');    // false

graph.addVertex('C');

graph.addEdge('A', 'B');
graph.addEdge('B', 'C');

const topologicalOrderKeys = graph.topologicalSort(); // ['A', 'B', 'C']

Undirected Graph snippet

TS or JS

import {UndirectedGraph} from 'data-structure-typed';

const graph = new UndirectedGraph();
graph.addVertex('A');
graph.addVertex('B');
graph.addVertex('C');
graph.addVertex('D');
graph.deleteVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'D');

const dijkstraResult = graph.dijkstra('A');
Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.key) // ['A', 'B', 'D']

Built-in classic algorithms

Algorithm Function Description Iteration Type
Binary Tree DFS Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree, and then the right subtree, using recursion. Recursion + Iteration
Binary Tree BFS Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level from left to right. Iteration
Graph DFS Traverse a graph in a depth-first manner, starting from a given node, exploring along one path as deeply as possible, and backtracking to explore other paths. Used for finding connected components, paths, etc. Recursion + Iteration
Binary Tree Morris Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree traversal without additional stack or recursion. Iteration
Graph BFS Traverse a graph in a breadth-first manner, starting from a given node, first visiting nodes directly connected to the starting node, and then expanding level by level. Used for finding shortest paths, etc. Recursion + Iteration
Graph Tarjan's Algorithm Find strongly connected components in a graph, typically implemented using depth-first search. Recursion
Graph Bellman-Ford Algorithm Finding the shortest paths from a single source, can handle negative weight edges Iteration
Graph Dijkstra's Algorithm Finding the shortest paths from a single source, cannot handle negative weight edges Iteration
Graph Floyd-Warshall Algorithm Finding the shortest paths between all pairs of nodes Iteration
Graph getCycles Find all cycles in a graph or detect the presence of cycles. Recursion
Graph getCutVertexes Find cut vertices in a graph, which are nodes that, when removed, increase the number of connected components in the graph. Recursion
Graph getSCCs Find strongly connected components in a graph, which are subgraphs where any two nodes can reach each other. Recursion
Graph getBridges Find bridges in a graph, which are edges that, when removed, increase the number of connected components in the graph. Recursion
Graph topologicalSort Perform topological sorting on a directed acyclic graph (DAG) to find a linear order of nodes such that all directed edges go from earlier nodes to later nodes. Recursion

API docs & Examples

API Docs

Live Examples

Examples Repository

Data Structures

Data Structure Unit Test Performance Test API Documentation Implemented
Binary Tree Binary Tree
Binary Search Tree (BST) BST
AVL Tree AVLTree
Red Black Tree RedBlackTree
Tree Multiset TreeMultimap
Segment Tree SegmentTree
Binary Indexed Tree BinaryIndexedTree
Graph AbstractGraph
Directed Graph DirectedGraph
Undirected Graph UndirectedGraph
Linked List SinglyLinkedList
Singly Linked List SinglyLinkedList
Doubly Linked List DoublyLinkedList
Queue Queue
Object Deque ObjectDeque
Array Deque ArrayDeque
Stack Stack
Coordinate Set CoordinateSet
Coordinate Map CoordinateMap
Heap Heap
Priority Queue PriorityQueue
Max Priority Queue MaxPriorityQueue
Min Priority Queue MinPriorityQueue
Trie Trie

Standard library data structure comparison

Data Structure Typed C++ STL java.util Python collections
DoublyLinkedList<E> list<T> LinkedList<E> deque
SinglyLinkedList<E> - - -
Array<E> vector<T> ArrayList<E> list
Queue<E> queue<T> Queue<E> -
Deque<E> deque<T> - -
PriorityQueue<E> priority_queue<T> PriorityQueue<E> -
Heap<E> priority_queue<T> PriorityQueue<E> heapq
Stack<E> stack<T> Stack<E> -
Set<E> set<T> HashSet<E> set
Map<K, V> map<K, V> HashMap<K, V> dict
- unordered_set<T> HashSet<E> -
HashMap<K, V> unordered_map<K, V> HashMap<K, V> defaultdict
Map<K, V> - - OrderedDict
BinaryTree<K, V> - - -
BST<K, V> - - -
TreeMultimap<K, V> multimap<K, V> - -
AVLTree<E> - TreeSet<E> -
AVLTree<K, V> - TreeMap<K, V> -
AVLTree<E> set TreeSet<E> -
Trie - - -
- multiset<T> - -
DirectedGraph<V, E> - - -
UndirectedGraph<V, E> - - -
- unordered_multiset - Counter
- - LinkedHashSet<E> -
- - LinkedHashMap<K, V> -
- unordered_multimap<K, V> - -
- bitset<N> - -

Benchmark

comparison
test nametime taken (ms)executions per secsample deviation
SRC 10,000 add0.571745.585.41e-6
CJS 10,000 add0.571751.774.80e-6
MJS 10,000 add0.571749.466.15e-6
SRC PQ 10,000 add & pop3.42292.802.97e-5
CJS PQ 10,000 add & pop3.40293.713.10e-5
MJS PQ 10,000 add & pop3.41293.623.51e-5
avl-tree
test nametime taken (ms)executions per secsample deviation
10,000 add randomly31.2532.003.13e-4
10,000 add & delete randomly71.8713.910.00
10,000 addMany41.0624.364.25e-4
10,000 get28.1035.592.51e-4
binary-tree
test nametime taken (ms)executions per secsample deviation
1,000 add randomly13.0276.791.25e-4
1,000 add & delete randomly15.8663.051.08e-4
1,000 addMany10.2697.467.97e-5
1,000 get18.3554.493.12e-4
1,000 dfs154.506.477.28e-4
1,000 bfs56.5317.693.74e-4
1,000 morris257.073.890.00
bst
test nametime taken (ms)executions per secsample deviation
10,000 add randomly28.2535.403.07e-4
10,000 add & delete randomly67.6914.778.51e-4
10,000 addMany29.2534.190.00
10,000 get28.7734.762.55e-4
rb-tree
test nametime taken (ms)executions per secsample deviation
100,000 add86.8811.510.00
100,000 add & delete randomly215.714.640.00
100,000 getNode40.7824.523.22e-4
directed-graph
test nametime taken (ms)executions per secsample deviation
1,000 addVertex0.109992.988.63e-7
1,000 addEdge6.11163.741.31e-4
1,000 getVertex0.052.16e+46.15e-7
1,000 getEdge23.0143.450.00
tarjan222.334.500.02
tarjan all224.994.440.02
topologicalSort177.805.620.01
hash-map
test nametime taken (ms)executions per secsample deviation
10,000 set0.991006.452.07e-5
10,000 set & get1.49669.202.66e-5
heap
test nametime taken (ms)executions per secsample deviation
10,000 add & pop5.78172.884.96e-5
10,000 fib add & pop357.912.790.01
doubly-linked-list
test nametime taken (ms)executions per secsample deviation
1,000,000 push207.574.820.04
1,000,000 unshift224.174.460.10
1,000,000 unshift & shift170.275.870.04
1,000,000 insertBefore325.713.070.08
singly-linked-list
test nametime taken (ms)executions per secsample deviation
10,000 push & pop223.424.480.02
10,000 insertBefore253.673.940.02
max-priority-queue
test nametime taken (ms)executions per secsample deviation
10,000 refill & poll10.5195.160.01
priority-queue
test nametime taken (ms)executions per secsample deviation
100,000 add & pop105.619.470.00
deque
test nametime taken (ms)executions per secsample deviation
1,000,000 push14.0171.394.74e-4
1,000,000 push & pop23.1243.256.61e-4
1,000,000 push & shift25.0040.000.01
1,000,000 unshift & shift22.0445.382.90e-4
queue
test nametime taken (ms)executions per secsample deviation
1,000,000 push48.2520.720.01
1,000,000 push & shift83.3811.990.00
stack
test nametime taken (ms)executions per secsample deviation
1,000,000 push45.0222.210.01
1,000,000 push & pop58.6317.060.03
trie
test nametime taken (ms)executions per secsample deviation
100,000 push44.8222.310.00
100,000 getWords111.828.940.05

Codebase design

Adhere to ES6 and ESNext standard naming conventions for APIs.

Standardize API conventions by using 'add' and 'delete' for element manipulation methods in all data structures.

Opt for concise and clear method names, avoiding excessive length while ensuring explicit intent.

Object-oriented programming(OOP)

By strictly adhering to object-oriented design (BinaryTree -> BST -> AVLTree -> TreeMultimap), you can seamlessly inherit the existing data structures to implement the customized ones you need. Object-oriented design stands as the optimal approach to data structure design.