What
Brief
Javascript & TypeScript Data Structure Library.
Binary Tree, Binary Search Tree (BST), AVL Tree, Tree Multiset, Segment Tree, Binary Indexed Tree, Graph, Directed Graph, Undirected Graph, Linked List, Singly Linked List, Doubly Linked List, Queue, Object Deque, Array Deque, Stack, Hash, Coordinate Set, Coordinate Map, Heap, Priority Queue, Max Priority Queue, Min Priority Queue, Trie
Algorithms list only a few out, you can discover more in API docs
DFS, DFSIterative, BFS, morris, Bellman-Ford Algorithm, Dijkstra's Algorithm, Floyd-Warshall Algorithm, Tarjan's Algorithm
Code design
By strictly adhering to object-oriented design (BinaryTree -> BST -> AVLTree -> TreeMultiset), you can seamlessly inherit the existing data structures to implement the customized ones you need. Object-oriented design stands as the optimal approach to data structure design.
How
install
yarn
yarn add data-structure-typed
npm
npm install data-structure-typed
Binary Search Tree (BST) snippet
TS
import {BST, BSTNode} from 'data-structure-typed';
const bst = new BST();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16; // true
bst.has(6); // true
const node6 = bst.get(6);
bst.getHeight(6) === 2; // true
bst.getHeight() === 5; // true
bst.getDepth(6) === 3; // true
const leftMost = bst.getLeftMost();
leftMost?.id === 1; // true
expect(leftMost?.id).toBe(1);
bst.remove(6);
bst.get(6); // null
bst.isAVLBalanced(); // true or false
const bfsIDs = bst.BFS();
bfsIDs[0] === 11; // true
expect(bfsIDs[0]).toBe(11);
const objBST = new BST<BSTNode<{ id: number, keyA: number }>>();
objBST.add(11, {id: 11, keyA: 11});
objBST.add(3, {id: 3, keyA: 3});
objBST.addMany([{id: 15, keyA: 15}, {id: 1, keyA: 1}, {id: 8, keyA: 8},
{id: 13, keyA: 13}, {id: 16, keyA: 16}, {id: 2, keyA: 2},
{id: 6, keyA: 6}, {id: 9, keyA: 9}, {id: 12, keyA: 12},
{id: 14, keyA: 14}, {id: 4, keyA: 4}, {id: 7, keyA: 7},
{id: 10, keyA: 10}, {id: 5, keyA: 5}]);
objBST.remove(11);
const avlTree = new AVLTree();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced(); // true
avlTree.remove(10);
avlTree.isAVLBalanced(); // true
JS
const {BST, BSTNode} = require('data-structure-typed');
const bst = new BST();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16; // true
bst.has(6); // true
const node6 = bst.get(6);
bst.getHeight(6) === 2; // true
bst.getHeight() === 5; // true
bst.getDepth(6) === 3; // true
const leftMost = bst.getLeftMost();
leftMost?.id === 1; // true
expect(leftMost?.id).toBe(1);
bst.remove(6);
bst.get(6); // null
bst.isAVLBalanced(); // true or false
const bfsIDs = bst.BFS();
bfsIDs[0] === 11; // true
expect(bfsIDs[0]).toBe(11);
const objBST = new BST();
objBST.add(11, {id: 11, keyA: 11});
objBST.add(3, {id: 3, keyA: 3});
objBST.addMany([{id: 15, keyA: 15}, {id: 1, keyA: 1}, {id: 8, keyA: 8},
{id: 13, keyA: 13}, {id: 16, keyA: 16}, {id: 2, keyA: 2},
{id: 6, keyA: 6}, {id: 9, keyA: 9}, {id: 12, keyA: 12},
{id: 14, keyA: 14}, {id: 4, keyA: 4}, {id: 7, keyA: 7},
{id: 10, keyA: 10}, {id: 5, keyA: 5}]);
objBST.remove(11);
const avlTree = new AVLTree();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced(); // true
avlTree.remove(10);
avlTree.isAVLBalanced(); // true
Directed Graph simple snippet
TS or JS
import {DirectedGraph} from 'data-structure-typed';
const graph = new DirectedGraph();
graph.addVertex('A');
graph.addVertex('B');
graph.hasVertex('A'); // true
graph.hasVertex('B'); // true
graph.hasVertex('C'); // false
graph.addEdge('A', 'B');
graph.hasEdge('A', 'B'); // true
graph.hasEdge('B', 'A'); // false
graph.removeEdgeSrcToDest('A', 'B');
graph.hasEdge('A', 'B'); // false
graph.addVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'C');
const topologicalOrderIds = graph.topologicalSort(); // ['A', 'B', 'C']
Undirected Graph snippet
TS or JS
import {UndirectedGraph} from 'data-structure-typed';
const graph = new UndirectedGraph();
graph.addVertex('A');
graph.addVertex('B');
graph.addVertex('C');
graph.addVertex('D');
graph.removeVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'D');
const dijkstraResult = graph.dijkstra('A');
Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.id) // ['A', 'B', 'D']
Data Structures
API docs & Examples
API Docs
Live Examples
Live Examples
Examples Repository
Why
Complexities
performance of Big O
Big O Notation |
Type |
Computations for 10 elements |
Computations for 100 elements |
Computations for 1000 elements |
O(1) |
Constant |
1 |
1 |
1 |
O(log N) |
Logarithmic |
3 |
6 |
9 |
O(N) |
Linear |
10 |
100 |
1000 |
O(N log N) |
n log(n) |
30 |
600 |
9000 |
O(N^2) |
Quadratic |
100 |
10000 |
1000000 |
O(2^N) |
Exponential |
1024 |
1.26e+29 |
1.07e+301 |
O(N!) |
Factorial |
3628800 |
9.3e+157 |
4.02e+2567 |
Data Structure Complexity
Data Structure |
Access |
Search |
Insertion |
Deletion |
Comments |
Array |
1 |
n |
n |
n |
|
Stack |
n |
n |
1 |
1 |
|
Queue |
n |
n |
1 |
1 |
|
Linked List |
n |
n |
1 |
n |
|
Hash Table |
- |
n |
n |
n |
In case of perfect hash function costs would be O(1) |
Binary Search Tree |
n |
n |
n |
n |
In case of balanced tree costs would be O(log(n)) |
B-Tree |
log(n) |
log(n) |
log(n) |
log(n) |
|
Red-Black Tree |
log(n) |
log(n) |
log(n) |
log(n) |
|
AVL Tree |
log(n) |
log(n) |
log(n) |
log(n) |
|
Bloom Filter |
- |
1 |
1 |
- |
False positives are possible while searching |
Sorting Complexity
Name |
Best |
Average |
Worst |
Memory |
Stable |
Comments |
Bubble sort |
n |
n2 |
n2 |
1 |
Yes |
|
Insertion sort |
n |
n2 |
n2 |
1 |
Yes |
|
Selection sort |
n2 |
n2 |
n2 |
1 |
No |
|
Heap sort |
n log(n) |
n log(n) |
n log(n) |
1 |
No |
|
Merge sort |
n log(n) |
n log(n) |
n log(n) |
n |
Yes |
|
Quick sort |
n log(n) |
n log(n) |
n2 |
log(n) |
No |
Quicksort is usually done in-place with O(log(n)) stack space |
Shell sort |
n log(n) |
depends on gap sequence |
n (log(n))2 |
1 |
No |
|
Counting sort |
n + r |
n + r |
n + r |
n + r |
Yes |
r - biggest number in array |
Radix sort |
n * k |
n * k |
n * k |
n + k |
Yes |
k - length of longest key |