Find a file
2024-01-24 18:38:34 +08:00
.github Update issue templates 2024-01-08 21:48:29 +08:00
scripts chore: red-black-tree-typed npm module added. All the sub modules READMEs are modified 2023-11-22 22:10:00 +08:00
src refactor: Use Comparable type constraint for the key in the binary tree to improve comparator performance. 2024-01-24 18:38:34 +08:00
test refactor: Use Comparable type constraint for the key in the binary tree to improve comparator performance. 2024-01-24 18:38:34 +08:00
.auto-changelog [project] quality of package improved. v1.3.6 published 2023-09-21 14:40:39 +08:00
.auto-changelog-template.hbs [project] quality of package improved. v1.3.6 published 2023-09-21 14:40:39 +08:00
.dependency-cruiser.js refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
.editorconfig refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
.eslintrc.js style: Change ESLint configuration from error type to warning type. Format the code. 2023-11-16 11:55:40 +08:00
.gitattributes test coverage report supported. Code quality enhanced and support multiple environments such as ES6 (ESModule), ES5 (CommonJS), and a single file for both browser and Node.js environments (UMD). Supported for source maps. CODE-OF-CONDUCT.md, COMMANDS.md, SECURITY.md, .gitattributes added. 2023-09-22 00:53:34 +08:00
.gitignore [benchmark] generated a performance testing report. 2023-11-02 09:24:06 +08:00
.npmignore [test] test coverage enriched to 90.37% 2023-10-29 21:52:27 +08:00
.npmrc [pkg] ci to publish 2023-09-26 20:21:20 +08:00
.prettierignore feat: Replace the AVLTree with a Red-Black Tree to implement TreeMultiMap, preserving the implementation of TreeMultiMap using AVLTree and renaming it as AVLTreeMultiMap. 2024-01-08 22:22:41 +08:00
.prettierrc.js style: reformated codebase 2023-11-16 10:14:14 +08:00
.travis.yml [project] Integrate the CI commands into a single command and uniformly invoke this CI command across different platforms. 2023-10-18 16:05:55 +08:00
CHANGELOG.md release: 1.51.7 2024-01-19 18:06:28 +08:00
CODE_OF_CONDUCT.md refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
COMMANDS.md refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
CONTRIBUTING.md refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
jest.config.js refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
jest.integration.config.js [project] Decouple integration testing from the CI workflow. 2023-11-01 18:19:49 +08:00
LICENSE [BinaryTree] isMergeDuplicatedNodeById removed, [MapGraph] MapGraph added 2023-09-07 21:00:22 +08:00
package-lock.json release: 1.51.7 2024-01-19 18:06:28 +08:00
package.json release: 1.51.7 2024-01-19 18:06:28 +08:00
POSTS_zh-CN.md feat: Restore the TreeNode data structure. Add number utilities to the utils module. docs: Update POSTS_zh-CN.md. 2024-01-17 22:27:38 +08:00
README.md Refactor: Added the _ensureCallback method to eliminate redundant code. 2024-01-19 18:02:56 +08:00
README_zh-CN.md feat: Replace the AVLTree with a Red-Black Tree to implement TreeMultiMap, preserving the implementation of TreeMultiMap using AVLTree and renaming it as AVLTreeMultiMap. 2024-01-08 22:22:41 +08:00
SECURITY.md refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
SPECIFICATION.md Refactor: Standardize addition and removal methods for all sequential data structures to push, pop, shift, unshift. 2024-01-09 12:04:50 +08:00
SPECIFICATION_zh-CN.md Refactor: Standardize addition and removal methods for all sequential data structures to push, pop, shift, unshift. 2024-01-09 12:04:50 +08:00
SPONSOR.md refactor: Directly constrain the methods clear, map, and filter in the base class. 2024-01-06 17:50:00 +08:00
SPONSOR_zh-CN.md Refactor: Standardize addition and removal methods for all sequential data structures to push, pop, shift, unshift. 2024-01-09 12:04:50 +08:00
tsconfig-base.json docs: Automate the writing of the table of contents for README.md. chore:Remove unused npm packages. 2023-11-21 14:16:06 +08:00
tsconfig-cjs.json refactor: Explicitly call the super.addMany method. chore: reformat project configs 2023-11-25 20:59:34 +08:00
tsconfig-mjs.json chore: Correct the packaging configuration files of different modules. 2023-11-13 23:51:43 +08:00
tsconfig.json fix: Implemented a high-performance HashMap comparable to the native Map. All test cases are standardized using 'it' instead of 'test'. Enabled tsconfig's sourceMap configuration for correct line numbers in IDE testing. 2023-11-15 23:17:55 +08:00
tsup.config.js chore: To avoid sacrificing performance, UMD modules use ES6 style. 2023-11-20 19:24:53 +08:00
typedoc.json refactor: Remove the _addTo method from BinaryTree and TreeMultiMap. 2023-12-22 19:59:38 +08:00

data-structure-typed

npm GitHub contributors npm package minimized gzipped size (select exports) GitHub top language GITHUB Star eslint NPM npm

Installation and Usage

npm

npm i data-structure-typed --save

yarn

yarn add data-structure-typed
import {
  Heap, Graph, Queue, Deque, PriorityQueue, BST, Trie, DoublyLinkedList,
  AVLTree, SinglyLinkedList, DirectedGraph, RedBlackTree, TreeMultiMap,
  DirectedVertex, Stack, AVLTreeNode
} from 'data-structure-typed';

If you only want to use a specific data structure independently, you can install it separately, for example, by running

npm i heap-typed --save

Why

Do you envy C++ with STL (std::), Python with collections, and Java with java.util ? Well, no need to envy anymore! JavaScript and TypeScript now have data-structure-typed.Benchmark compared with C++ STL. API standards aligned with ES6 and Java. Usability is comparable to Python

Performance

Performance surpasses that of native JS/TS

Method Time Taken Data Scale Belongs To big O
Queue.push & shift 5.83 ms 100K Ours O(1)
Array.push & shift 2829.59 ms 100K Native JS O(n)
Deque.unshift & shift 2.44 ms 100K Ours O(1)
Array.unshift & shift 4750.37 ms 100K Native JS O(n)
HashMap.set 122.51 ms 1M Ours O(1)
Map.set 223.80 ms 1M Native JS O(1)
Set.add 185.06 ms 1M Native JS O(1)

Conciseness and uniformity

In java.utils, you need to memorize a table for all sequential data structures(Queue, Deque, LinkedList),

Java ArrayList Java Queue Java ArrayDeque Java LinkedList
add offer push push
remove poll removeLast removeLast
remove poll removeFirst removeFirst
add(0, element) offerFirst unshift unshift

whereas in our data-structure-typed, you only need to remember four methods: push, pop, shift, and unshift for all sequential data structures(Queue, Deque, DoublyLinkedList, SinglyLinkedList and Array).

Data structures available

We provide data structures that are not available in JS/TS

Data Structure Unit Test Perf Test API Doc NPM Downloads
Binary Tree View View NPM Downloads
Binary Search Tree (BST) View View NPM Downloads
AVL Tree View View NPM Downloads
Red Black Tree View View NPM Downloads
Tree Multimap View View NPM Downloads
Heap View View NPM Downloads
Priority Queue View View NPM Downloads
Max Priority Queue View View NPM Downloads
Min Priority Queue View View NPM Downloads
Trie View View NPM Downloads
Graph View View NPM Downloads
Directed Graph View View NPM Downloads
Undirected Graph View View NPM Downloads
Queue View View NPM Downloads
Deque View View NPM Downloads
Hash Map View
Linked List View View NPM Downloads
Singly Linked List View View NPM Downloads
Doubly Linked List View View NPM Downloads
Stack View View NPM Downloads
Segment Tree View
Binary Indexed Tree View

Vivid Examples

AVL Tree

Try it out, or you can run your own code using our visual tool

Tree Multi Map

Try it out

Directed Graph

Try it out

Map Graph

Try it out

Code Snippets

Red Black Tree snippet

TS

import { RedBlackTree } from 'data-structure-typed';

const rbTree = new RedBlackTree<number>();
rbTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
rbTree.isAVLBalanced();    // true
rbTree.delete(10);
rbTree.isAVLBalanced();    // true
rbTree.print()
//         ___6________
//        /            \
//      ___4_       ___11________
//     /     \     /             \
//    _2_    5    _8_       ____14__
//   /   \       /   \     /        \
//   1   3       7   9    12__     15__
//                            \        \
//                           13       16

JS

import { RedBlackTree } from 'data-structure-typed';

const rbTree = new RedBlackTree();
rbTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
rbTree.isAVLBalanced();    // true
rbTree.delete(10);
rbTree.isAVLBalanced();    // true
rbTree.print()
//         ___6________
//        /            \
//      ___4_       ___11________
//     /     \     /             \
//    _2_    5    _8_       ____14__
//   /   \       /   \     /        \
//   1   3       7   9    12__     15__
//                            \        \
//                           13       16

Free conversion between data structures.

const orgArr = [6, 1, 2, 7, 5, 3, 4, 9, 8];
const orgStrArr = ["trie", "trial", "trick", "trip", "tree", "trend", "triangle", "track", "trace", "transmit"];
const entries = [[6, "6"], [1, "1"], [2, "2"], [7, "7"], [5, "5"], [3, "3"], [4, "4"], [9, "9"], [8, "8"]];

const queue = new Queue(orgArr);
queue.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]

const deque = new Deque(orgArr);
deque.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]

const sList = new SinglyLinkedList(orgArr);
sList.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]

const dList = new DoublyLinkedList(orgArr);
dList.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]

const stack = new Stack(orgArr);
stack.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]

const minHeap = new MinHeap(orgArr);
minHeap.print();
// [1, 5, 2, 7, 6, 3, 4, 9, 8]

const maxPQ = new MaxPriorityQueue(orgArr);
maxPQ.print();
// [9, 8, 4, 7, 5, 2, 3, 1, 6]

const biTree = new BinaryTree(entries);
biTree.print();
//         ___6___
//        /       \
//     ___1_     _2_
//    /     \   /   \
//   _7_    5   3   4
//  /   \
//  9   8

const bst = new BST(entries);
bst.print();
//     _____5___
//    /         \
//   _2_       _7_
//  /   \     /   \
//  1   3_    6   8_
//        \         \
//        4         9


const rbTree = new RedBlackTree(entries);
rbTree.print();
//     ___4___
//    /       \
//   _2_     _6___
//  /   \   /     \
//  1   3   5    _8_
//              /   \
//              7   9


const avl = new AVLTree(entries);
avl.print();
//     ___4___
//    /       \
//   _2_     _6___
//  /   \   /     \
//  1   3   5    _8_
//              /   \
//              7   9

const treeMulti = new TreeMultiMap(entries);
treeMulti.print();
//     ___4___
//    /       \
//   _2_     _6___
//  /   \   /     \
//  1   3   5    _8_
//              /   \
//              7   9

const hm = new HashMap(entries);
hm.print()
// [[6, "6"], [1, "1"], [2, "2"], [7, "7"], [5, "5"], [3, "3"], [4, "4"], [9, "9"], [8, "8"]]

const rbTreeH = new RedBlackTree(hm);
rbTreeH.print();
//     ___4___
//    /       \
//   _2_     _6___
//  /   \   /     \
//  1   3   5    _8_
//              /   \
//              7   9

const pq = new MinPriorityQueue(orgArr);
pq.print();
// [1, 5, 2, 7, 6, 3, 4, 9, 8]

const bst1 = new BST(pq);
bst1.print();
//     _____5___
//    /         \
//   _2_       _7_
//  /   \     /   \
//  1   3_    6   8_
//        \         \
//        4         9

const dq1 = new Deque(orgArr);
dq1.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const rbTree1 = new RedBlackTree(dq1);
rbTree1.print();
//    _____5___
//   /         \
//  _2___     _7___
// /     \   /     \
// 1    _4   6    _9
//      /         /
//      3         8


const trie2 = new Trie(orgStrArr);
trie2.print();
// ['trie', 'trial', 'triangle', 'trick', 'trip', 'tree', 'trend', 'track', 'trace', 'transmit']
const heap2 = new Heap(trie2, { comparator: (a, b) => Number(a) - Number(b) });
heap2.print();
// ['transmit', 'trace', 'tree', 'trend', 'track', 'trial', 'trip', 'trie', 'trick', 'triangle']
const dq2 = new Deque(heap2);
dq2.print();
// ['transmit', 'trace', 'tree', 'trend', 'track', 'trial', 'trip', 'trie', 'trick', 'triangle']
const entries2 = dq2.map((el, i) => [i, el]);
const avl2 = new AVLTree(entries2);
avl2.print();
//     ___3_______
//    /           \
//   _1_       ___7_
//  /   \     /     \
//  0   2    _5_    8_
//          /   \     \
//          4   6     9

Binary Search Tree (BST) snippet

import { BST, BSTNode } from 'data-structure-typed';

const bst = new BST<number>();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16;                // true
bst.has(6);                     // true
const node6 = bst.getNode(6);   // BSTNode
bst.getHeight(6) === 2;         // true
bst.getHeight() === 5;          // true
bst.getDepth(6) === 3;          // true

bst.getLeftMost()?.key === 1;   // true

bst.delete(6);
bst.get(6);                     // undefined
bst.isAVLBalanced();            // true
bst.bfs()[0] === 11;            // true
bst.print()
//       ______________11_____           
//      /                     \          
//   ___3_______            _13_____
//  /           \          /        \    
//  1_     _____8____     12      _15__
//    \   /          \           /     \ 
//    2   4_       _10          14    16
//          \     /                      
//          5_    9
//            \                          
//            7

const objBST = new BST<number, { height: number, age: number }>();

objBST.add(11, { "name": "Pablo", "age": 15 });
objBST.add(3, { "name": "Kirk", "age": 1 });

objBST.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5], [
    { "name": "Alice", "age": 15 },
    { "name": "Bob", "age": 1 },
    { "name": "Charlie", "age": 8 },
    { "name": "David", "age": 13 },
    { "name": "Emma", "age": 16 },
    { "name": "Frank", "age": 2 },
    { "name": "Grace", "age": 6 },
    { "name": "Hannah", "age": 9 },
    { "name": "Isaac", "age": 12 },
    { "name": "Jack", "age": 14 },
    { "name": "Katie", "age": 4 },
    { "name": "Liam", "age": 7 },
    { "name": "Mia", "age": 10 },
    { "name": "Noah", "age": 5 }
  ]
);

objBST.delete(11);

AVLTree snippet

import { AVLTree } from 'data-structure-typed';

const avlTree = new AVLTree<number>();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced();    // true
avlTree.delete(10);
avlTree.isAVLBalanced();    // true

Directed Graph simple snippet

import { DirectedGraph } from 'data-structure-typed';

const graph = new DirectedGraph<string>();

graph.addVertex('A');
graph.addVertex('B');

graph.hasVertex('A');       // true
graph.hasVertex('B');       // true
graph.hasVertex('C');       // false

graph.addEdge('A', 'B');
graph.hasEdge('A', 'B');    // true
graph.hasEdge('B', 'A');    // false

graph.deleteEdgeSrcToDest('A', 'B');
graph.hasEdge('A', 'B');    // false

graph.addVertex('C');

graph.addEdge('A', 'B');
graph.addEdge('B', 'C');

const topologicalOrderKeys = graph.topologicalSort(); // ['A', 'B', 'C']

Undirected Graph snippet

import { UndirectedGraph } from 'data-structure-typed';

const graph = new UndirectedGraph<string>();
graph.addVertex('A');
graph.addVertex('B');
graph.addVertex('C');
graph.addVertex('D');
graph.deleteVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'D');

const dijkstraResult = graph.dijkstra('A');
Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.key) // ['A', 'B', 'D']


API docs & Examples

API Docs

Live Examples

Examples Repository

Benchmark

MacBook Pro (15-inch, 2018)

Processor 2.2 GHz 6-Core Intel Core i7

Memory 16 GB 2400 MHz DDR4

Graphics Radeon Pro 555X 4 GB

Intel UHD Graphics 630 1536 MB

macOS Big Sur

Version 11.7.9

heap
test nametime taken (ms)executions per secsample deviation
100,000 add6.42155.781.88e-4
100,000 add & poll31.6031.659.13e-4
rb-tree
test nametime taken (ms)executions per secsample deviation
100,000 add59.2816.877.81e-4
100,000 add randomly71.6113.969.02e-4
100,000 get104.139.600.00
100,000 iterator27.0337.000.00
100,000 add & delete orderly126.427.910.00
100,000 add & delete randomly214.364.660.00
queue
test nametime taken (ms)executions per secsample deviation
1,000,000 push44.9822.230.01
100,000 push & shift4.89204.396.15e-4
Native JS Array 100,000 push & shift2251.130.440.26
deque
test nametime taken (ms)executions per secsample deviation
1,000,000 push22.2145.020.00
1,000,000 push & pop30.9732.290.00
1,000,000 push & shift30.8132.460.00
100,000 push & shift3.24308.252.08e-4
Native JS Array 100,000 push & shift2279.950.440.21
100,000 unshift & shift2.93341.783.21e-4
Native JS Array 100,000 unshift & shift4076.040.250.42
hash-map
test nametime taken (ms)executions per secsample deviation
1,000,000 set118.118.470.02
Native JS Map 1,000,000 set206.184.850.01
Native JS Set 1,000,000 add167.505.970.01
1,000,000 set & get116.158.610.01
Native JS Map 1,000,000 set & get269.113.720.02
Native JS Set 1,000,000 add & has168.025.950.01
1,000,000 ObjKey set & get335.362.980.04
Native JS Map 1,000,000 ObjKey set & get327.783.050.06
Native JS Set 1,000,000 ObjKey add & has281.643.550.04
trie
test nametime taken (ms)executions per secsample deviation
100,000 push43.6422.918.01e-4
100,000 getWords82.9512.060.00
avl-tree
test nametime taken (ms)executions per secsample deviation
100,000 add263.013.800.02
100,000 add randomly353.892.830.01
100,000 get131.657.600.00
100,000 iterator31.6231.630.01
100,000 add & delete orderly468.812.130.00
100,000 add & delete randomly628.301.590.03
binary-tree-overall
test nametime taken (ms)executions per secsample deviation
10,000 RBTree add randomly5.79172.737.35e-5
10,000 RBTree get randomly9.58104.379.96e-5
10,000 RBTree add & delete randomly17.8256.121.90e-4
10,000 AVLTree add randomly27.8535.913.16e-4
10,000 AVLTree get randomly10.7393.196.38e-5
10,000 AVLTree add & delete randomly48.9820.423.91e-4
directed-graph
test nametime taken (ms)executions per secsample deviation
1,000 addVertex0.109624.607.61e-7
1,000 addEdge6.02166.181.45e-4
1,000 getVertex0.052.17e+43.52e-7
1,000 getEdge23.8841.880.00
tarjan215.084.650.01
topologicalSort187.835.320.00
doubly-linked-list
test nametime taken (ms)executions per secsample deviation
1,000,000 push221.694.510.03
1,000,000 unshift227.334.400.07
1,000,000 unshift & shift170.085.880.02
1,000,000 addBefore321.293.110.07
singly-linked-list
test nametime taken (ms)executions per secsample deviation
1,000,000 push & shift213.144.690.04
10,000 push & pop217.844.590.01
10,000 addBefore250.813.990.01
priority-queue
test nametime taken (ms)executions per secsample deviation
100,000 add26.9137.161.96e-4
100,000 add & poll75.0913.325.04e-4
stack
test nametime taken (ms)executions per secsample deviation
1,000,000 push39.9225.050.01
1,000,000 push & pop48.0820.800.01

The corresponding relationships between data structures in different language standard libraries.

Data Structure Typed C++ STL java.util Python collections
Heap<E> - - heapq
PriorityQueue<E> priority_queue<T> PriorityQueue<E> -
Deque<E> deque<T> ArrayDeque<E> deque
Queue<E> queue<T> Queue<E> -
HashMap<K, V> unordered_map<K, V> HashMap<K, V> defaultdict
DoublyLinkedList<E> list<T> LinkedList<E> -
SinglyLinkedList<E> - - -
BinaryTree<K, V> - - -
BST<K, V> - - -
RedBlackTree<E> set<T> TreeSet<E> -
RedBlackTree<K, V> map<K, V> TreeMap<K, V> -
TreeMultiMap<K, V> multimap<K, V> - -
TreeMultiMap<E> multiset<T> - -
Trie - - -
DirectedGraph<V, E> - - -
UndirectedGraph<V, E> - - -
PriorityQueue<E> priority_queue<T> PriorityQueue<E> -
Array<E> vector<T> ArrayList<E> list
Stack<E> stack<T> Stack<E> -
HashMap<E> unordered_set<T> HashSet<E> set
- unordered_multiset - Counter
LinkedHashMap<K, V> - LinkedHashMap<K, V> OrderedDict
- unordered_multimap<K, V> - -
- bitset<N> - -

Built-in classic algorithms

Algorithm Function Description Iteration Type
Binary Tree DFS Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree, and then the right subtree, using recursion. Recursion + Iteration
Binary Tree BFS Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level from left to right. Iteration
Graph DFS Traverse a graph in a depth-first manner, starting from a given node, exploring along one path as deeply as possible, and backtracking to explore other paths. Used for finding connected components, paths, etc. Recursion + Iteration
Binary Tree Morris Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree traversal without additional stack or recursion. Iteration
Graph BFS Traverse a graph in a breadth-first manner, starting from a given node, first visiting nodes directly connected to the starting node, and then expanding level by level. Used for finding shortest paths, etc. Recursion + Iteration
Graph Tarjan's Algorithm Find strongly connected components in a graph, typically implemented using depth-first search. Recursion
Graph Bellman-Ford Algorithm Finding the shortest paths from a single source, can handle negative weight edges Iteration
Graph Dijkstra's Algorithm Finding the shortest paths from a single source, cannot handle negative weight edges Iteration
Graph Floyd-Warshall Algorithm Finding the shortest paths between all pairs of nodes Iteration
Graph getCycles Find all cycles in a graph or detect the presence of cycles. Recursion
Graph getCutVertices Find cut vertices in a graph, which are nodes that, when removed, increase the number of connected components in the graph. Recursion
Graph getSCCs Find strongly connected components in a graph, which are subgraphs where any two nodes can reach each other. Recursion
Graph getBridges Find bridges in a graph, which are edges that, when removed, increase the number of connected components in the graph. Recursion
Graph topologicalSort Perform topological sorting on a directed acyclic graph (DAG) to find a linear order of nodes such that all directed edges go from earlier nodes to later nodes. Recursion

Software Engineering Design Standards

We strictly adhere to computer science theory and software development standards. Our LinkedList is designed in the traditional sense of the LinkedList data structure, and we refrain from substituting it with a Deque solely for the purpose of showcasing performance test data. However, we have also implemented a Deque based on a dynamic array concurrently.

Principle Description
Practicality Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.
Extensibility Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.
Modularization Includes data structure modularization and independent NPM packages.
Efficiency All methods provide time and space complexity, comparable to native JS performance.
Maintainability Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.
Testability Automated and customized unit testing, performance testing, and integration testing.
Portability Plans for porting to Java, Python, and C++, currently achieved to 80%.
Reusability Fully decoupled, minimized side effects, and adheres to OOP.
Security Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.
Scalability Data structure software does not involve load issues.

supported module system

Now you can use it in Node.js and browser environments

CommonJS:require export.modules =

ESModule:   import export

Typescript:   import export

UMD:           var Deque = dataStructureTyped.Deque

CDN

Copy the line below into the head tag in an HTML document.

development


<script src='https://cdn.jsdelivr.net/npm/data-structure-typed/dist/umd/data-structure-typed.js'></script>

production


<script src='https://cdn.jsdelivr.net/npm/data-structure-typed/dist/umd/data-structure-typed.min.js'></script>

Copy the code below into the script tag of your HTML, and you're good to go with your development.

const { Heap } = dataStructureTyped;
const {
  BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList,
  AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultiMap,
  DirectedVertex, AVLTreeNode
} = dataStructureTyped;