# Data Structure Typed
![npm](https://img.shields.io/npm/v/data-structure-typed)
![npm](https://img.shields.io/npm/dm/data-structure-typed)
![npm package minimized gzipped size (select exports)](https://img.shields.io/bundlejs/size/data-structure-typed)
![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed)
![eslint](https://aleen42.github.io/badges/src/eslint.svg)
![NPM](https://img.shields.io/npm/l/data-structure-typed)
[//]: # (![npm bundle size](https://img.shields.io/bundlephobia/min/data-structure-typed))
Data Structures of Javascript & TypeScript.
Do you envy C++ with [STL]() (std::), Python with [collections](), and Java with [java.util]() ? Well, no need to envy
anymore! JavaScript and TypeScript now have [data-structure-typed]().**`Benchmark`** compared with C++ STL. **`API standards`** aligned with ES6 and Java. **`Usability`** is comparable to Python
[//]: # (![Branches](https://img.shields.io/badge/branches-55.47%25-red.svg?style=flat))
[//]: # (![Statements](https://img.shields.io/badge/statements-67%25-red.svg?style=flat))
[//]: # (![Functions](https://img.shields.io/badge/functions-66.38%25-red.svg?style=flat))
[//]: # (![Lines](https://img.shields.io/badge/lines-68.6%25-red.svg?style=flat))
## Installation and Usage
Now you can use it in Node.js and browser environments
CommonJS:**`require export.modules =`**
ESModule: **`import export`**
Typescript: **`import export`**
UMD: **`var Deque = dataStructureTyped.Deque`**
### npm
```bash
npm i data-structure-typed --save
```
### yarn
```bash
yarn add data-structure-typed
```
```js
import {
BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList,
AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap,
DirectedVertex, AVLTreeNode
} from 'data-structure-typed';
```
### CDN
Copy the line below into the head tag in an HTML document.
#### development
```html
```
#### production
```html
```
Copy the code below into the script tag of your HTML, and you're good to go with your development.
```js
const {Heap} = dataStructureTyped;
const {
BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList,
AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap,
DirectedVertex, AVLTreeNode
} = dataStructureTyped;
```
## Vivid Examples
### Binary Tree
[Try it out](https://vivid-algorithm.vercel.app/), or you can run your own code using
our [visual tool](https://github.com/zrwusa/vivid-algorithm)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/binary-tree-array-to-binary-tree.webp)
### Binary Tree DFS
[Try it out](https://vivid-algorithm.vercel.app/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/binary-tree-dfs-in-order.webp)
### AVL Tree
[Try it out](https://vivid-algorithm.vercel.app/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/avl-tree-test.webp)
### Tree Multi Map
[Try it out](https://vivid-algorithm.vercel.app/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/tree-multiset-test.webp)
### Matrix
[Try it out](https://vivid-algorithm.vercel.app/algorithm/graph/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/matrix-cut-off-tree-for-golf.webp)
### Directed Graph
[Try it out](https://vivid-algorithm.vercel.app/algorithm/graph/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/directed-graph-test.webp)
### Map Graph
[Try it out](https://vivid-algorithm.vercel.app/algorithm/graph/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/map-graph-test.webp)
## Code Snippets
### Binary Search Tree (BST) snippet
#### TS
```ts
import {BST, BSTNode} from 'data-structure-typed';
const bst = new BST();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16; // true
bst.has(6); // true
const node6 = bst.getNode(6); // BSTNode
bst.getHeight(6) === 2; // true
bst.getHeight() === 5; // true
bst.getDepth(6) === 3; // true
bst.getLeftMost()?.key === 1; // true
bst.delete(6);
bst.get(6); // undefined
bst.isAVLBalanced(); // true
bst.bfs()[0] === 11; // true
bst.print()
// ______________11_____
// / \
// ___3_______ _13_____
// / \ / \
// 1_ _____8____ 12 _15__
// \ / \ / \
// 2 4_ _10 14 16
// \ /
// 5_ 9
// \
// 7
const objBST = new BST<{height: number, age: number}>();
objBST.add(11, { "name": "Pablo", "age": 15 });
objBST.add(3, { "name": "Kirk", "age": 1 });
objBST.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5], [
{ "name": "Alice", "age": 15 },
{ "name": "Bob", "age": 1 },
{ "name": "Charlie", "age": 8 },
{ "name": "David", "age": 13 },
{ "name": "Emma", "age": 16 },
{ "name": "Frank", "age": 2 },
{ "name": "Grace", "age": 6 },
{ "name": "Hannah", "age": 9 },
{ "name": "Isaac", "age": 12 },
{ "name": "Jack", "age": 14 },
{ "name": "Katie", "age": 4 },
{ "name": "Liam", "age": 7 },
{ "name": "Mia", "age": 10 },
{ "name": "Noah", "age": 5 }
]
);
objBST.delete(11);
```
#### JS
```js
const {BST, BSTNode} = require('data-structure-typed');
const bst = new BST();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16; // true
bst.has(6); // true
const node6 = bst.getNode(6);
bst.getHeight(6) === 2; // true
bst.getHeight() === 5; // true
bst.getDepth(6) === 3; // true
const leftMost = bst.getLeftMost();
leftMost?.key === 1; // true
bst.delete(6);
bst.get(6); // undefined
bst.isAVLBalanced(); // true or false
const bfsIDs = bst.bfs();
bfsIDs[0] === 11; // true
```
### AVLTree snippet
```ts
import {AVLTree} from 'data-structure-typed';
const avlTree = new AVLTree();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced(); // true
avlTree.delete(10);
avlTree.isAVLBalanced(); // true
```
### RedBlackTree snippet
```ts
import {RedBlackTree} from 'data-structure-typed';
const rbTree = new RedBlackTree();
rbTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
rbTree.isAVLBalanced(); // true
rbTree.delete(10);
rbTree.isAVLBalanced(); // true
rbTree.print()
// ___6________
// / \
// ___4_ ___11________
// / \ / \
// _2_ 5 _8_ ____14__
// / \ / \ / \
// 1 3 7 9 12__ 15__
// \ \
// 13 16
```
### Directed Graph simple snippet
```ts
import {DirectedGraph} from 'data-structure-typed';
const graph = new DirectedGraph();
graph.addVertex('A');
graph.addVertex('B');
graph.hasVertex('A'); // true
graph.hasVertex('B'); // true
graph.hasVertex('C'); // false
graph.addEdge('A', 'B');
graph.hasEdge('A', 'B'); // true
graph.hasEdge('B', 'A'); // false
graph.deleteEdgeSrcToDest('A', 'B');
graph.hasEdge('A', 'B'); // false
graph.addVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'C');
const topologicalOrderKeys = graph.topologicalSort(); // ['A', 'B', 'C']
```
### Undirected Graph snippet
```ts
import {UndirectedGraph} from 'data-structure-typed';
const graph = new UndirectedGraph();
graph.addVertex('A');
graph.addVertex('B');
graph.addVertex('C');
graph.addVertex('D');
graph.deleteVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'D');
const dijkstraResult = graph.dijkstra('A');
Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.key) // ['A', 'B', 'D']
```
### Free conversion between data structures.
```js
const orgArr = [6, 1, 2, 7, 5, 3, 4, 9, 8];
const orgStrArr = ["trie", "trial", "trick", "trip", "tree", "trend", "triangle", "track", "trace", "transmit"];
const entries = [[6, 6], [1, 1], [2, 2], [7, 7], [5, 5], [3, 3], [4, 4], [9, 9], [8, 8]];
const queue = new Queue(orgArr);
queue.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const deque = new Deque(orgArr);
deque.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const sList = new SinglyLinkedList(orgArr);
sList.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const dList = new DoublyLinkedList(orgArr);
dList.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const stack = new Stack(orgArr);
stack.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const minHeap = new MinHeap(orgArr);
minHeap.print();
// [1, 5, 2, 7, 6, 3, 4, 9, 8]
const maxPQ = new MaxPriorityQueue(orgArr);
maxPQ.print();
// [9, 8, 4, 7, 5, 2, 3, 1, 6]
const biTree = new BinaryTree(entries);
biTree.print();
// ___6___
// / \
// ___1_ _2_
// / \ / \
// _7_ 5 3 4
// / \
// 9 8
const bst = new BST(entries);
bst.print();
// _____5___
// / \
// _2_ _7_
// / \ / \
// 1 3_ 6 8_
// \ \
// 4 9
const rbTree = new RedBlackTree(entries);
rbTree.print();
// ___4___
// / \
// _2_ _6___
// / \ / \
// 1 3 5 _8_
// / \
// 7 9
const avl = new AVLTree(entries);
avl.print();
// ___4___
// / \
// _2_ _6___
// / \ / \
// 1 3 5 _8_
// / \
// 7 9
const treeMulti = new TreeMultimap(entries);
treeMulti.print();
// ___4___
// / \
// _2_ _6___
// / \ / \
// 1 3 5 _8_
// / \
// 7 9
const hm = new HashMap(entries);
hm.print()
// [[6, 6], [1, 1], [2, 2], [7, 7], [5, 5], [3, 3], [4, 4], [9, 9], [8, 8]]
const rbTreeH = new RedBlackTree(hm);
rbTreeH.print();
// ___4___
// / \
// _2_ _6___
// / \ / \
// 1 3 5 _8_
// / \
// 7 9
const pq = new MinPriorityQueue(orgArr);
pq.print();
// [1, 5, 2, 7, 6, 3, 4, 9, 8]
const bst1 = new BST(pq);
bst1.print();
// _____5___
// / \
// _2_ _7_
// / \ / \
// 1 3_ 6 8_
// \ \
// 4 9
const dq1 = new Deque(orgArr);
dq1.print();
// [6, 1, 2, 7, 5, 3, 4, 9, 8]
const rbTree1 = new RedBlackTree(dq1);
rbTree1.print();
// _____5___
// / \
// _2___ _7___
// / \ / \
// 1 _4 6 _9
// / /
// 3 8
const trie2 = new Trie(orgStrArr);
trie2.print();
// ['trie', 'trial', 'triangle', 'trick', 'trip', 'tree', 'trend', 'track', 'trace', 'transmit']
const heap2 = new Heap(trie2, { comparator: (a, b) => Number(a) - Number(b) });
heap2.print();
// ['transmit', 'trace', 'tree', 'trend', 'track', 'trial', 'trip', 'trie', 'trick', 'triangle']
const dq2 = new Deque(heap2);
dq2.print();
// ['transmit', 'trace', 'tree', 'trend', 'track', 'trial', 'trip', 'trie', 'trick', 'triangle']
const entries2 = dq2.map((el, i) => [i, el]);
const avl2 = new AVLTree(entries2);
avl2.print();
// ___3_______
// / \
// _1_ ___7_
// / \ / \
// 0 2 _5_ 8_
// / \ \
// 4 6 9
```
## API docs & Examples
[API Docs](https://data-structure-typed-docs.vercel.app)
[Live Examples](https://vivid-algorithm.vercel.app)
Examples Repository
## Data Structures
Data Structure |
Unit Test |
Performance Test |
API Docs |
Binary Tree |
|
|
View |
Binary Search Tree (BST) |
|
|
View |
AVL Tree |
|
|
View |
Red Black Tree |
|
|
View |
Tree Multiset |
|
|
View |
Segment Tree |
|
|
View |
Binary Indexed Tree |
|
|
View |
Heap |
|
|
View |
Priority Queue |
|
|
View |
Max Priority Queue |
|
|
View |
Min Priority Queue |
|
|
View |
Trie |
|
|
View |
Graph |
|
|
View |
Directed Graph |
|
|
View |
Undirected Graph |
|
|
View |
Queue |
|
|
View |
Deque |
|
|
View |
Hash Map |
|
|
View |
Linked List |
|
|
View |
Singly Linked List |
|
|
View |
Doubly Linked List |
|
|
View |
Stack |
|
|
View |
## Standard library data structure comparison
Data Structure Typed |
C++ STL |
java.util |
Python collections |
Heap<E> |
priority_queue<T> |
PriorityQueue<E> |
heapq |
Deque<E> |
deque<T> |
ArrayDeque<E> |
deque |
Queue<E> |
queue<T> |
Queue<E> |
- |
HashMap<K, V> |
unordered_map<K, V> |
HashMap<K, V> |
defaultdict |
DoublyLinkedList<E> |
list<T> |
LinkedList<E> |
- |
SinglyLinkedList<E> |
- |
- |
- |
BinaryTree<K, V> |
- |
- |
- |
BST<K, V> |
- |
- |
- |
RedBlackTree<E> |
set<T> |
TreeSet<E> |
- |
RedBlackTree<K, V> |
map<K, V> |
TreeMap<K, V> |
- |
TreeMultimap<K, V> |
multimap<K, V> |
- |
- |
- |
multiset<T> |
- |
- |
Trie |
- |
- |
- |
DirectedGraph<V, E> |
- |
- |
- |
UndirectedGraph<V, E> |
- |
- |
- |
PriorityQueue<E> |
priority_queue<T> |
PriorityQueue<E> |
- |
Array<E> |
vector<T> |
ArrayList<E> |
list |
Stack<E> |
stack<T> |
Stack<E> |
- |
Set<E> |
- |
HashSet<E> |
set |
HashMap<K, V> |
- |
HashMap<K, V> |
dict |
- |
unordered_set<T> |
HashSet<E> |
- |
Map<K, V> |
- |
- |
OrderedDict |
- |
unordered_multiset |
- |
Counter |
- |
- |
LinkedHashSet<E> |
- |
LinkedHashMap<K, V> |
- |
LinkedHashMap<K, V> |
- |
- |
unordered_multimap<K, V> |
- |
- |
- |
bitset<N> |
- |
- |
## Benchmark
[//]: # (No deletion!!! Start of Replace Section)
avl-tree
test name | time taken (ms) | executions per sec | sample deviation |
---|
10,000 add randomly | 34.57 | 28.93 | 0.01 |
10,000 add & delete randomly | 80.91 | 12.36 | 0.02 |
10,000 addMany | 38.81 | 25.76 | 0.01 |
10,000 get | 32.58 | 30.69 | 0.01 |
binary-tree
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000 add randomly | 14.61 | 68.46 | 0.00 |
1,000 add & delete randomly | 21.50 | 46.51 | 0.01 |
1,000 addMany | 15.57 | 64.22 | 0.01 |
1,000 get | 32.93 | 30.36 | 0.02 |
1,000 has | 26.55 | 37.67 | 0.02 |
1,000 dfs | 181.64 | 5.51 | 0.03 |
1,000 bfs | 94.85 | 10.54 | 0.05 |
1,000 morris | 316.07 | 3.16 | 0.04 |
bst
test name | time taken (ms) | executions per sec | sample deviation |
---|
10,000 add randomly | 27.63 | 36.19 | 0.01 |
10,000 add & delete randomly | 73.15 | 13.67 | 0.02 |
10,000 addMany | 27.44 | 36.44 | 0.01 |
10,000 get | 37.03 | 27.01 | 0.02 |
rb-tree
test name | time taken (ms) | executions per sec | sample deviation |
---|
100,000 add | 113.44 | 8.82 | 0.02 |
100,000 add & delete randomly | 283.31 | 3.53 | 0.03 |
100,000 getNode | 89.35 | 11.19 | 0.01 |
100,000 add & iterator | 143.95 | 6.95 | 0.03 |
comparison
test name | time taken (ms) | executions per sec | sample deviation |
---|
SRC PQ 10,000 add | 0.16 | 6180.55 | 3.37e-5 |
CJS PQ 10,000 add | 0.17 | 6004.31 | 4.09e-5 |
MJS PQ 10,000 add | 0.66 | 1512.95 | 1.66e-4 |
SRC PQ 10,000 add & pop | 3.89 | 256.83 | 7.53e-4 |
CJS PQ 10,000 add & pop | 4.02 | 248.66 | 0.00 |
MJS PQ 10,000 add & pop | 3.78 | 264.62 | 8.38e-4 |
directed-graph
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000 addVertex | 0.12 | 8625.55 | 2.88e-5 |
1,000 addEdge | 8.52 | 117.35 | 0.00 |
1,000 getVertex | 0.05 | 1.92e+4 | 1.11e-5 |
1,000 getEdge | 20.83 | 48.02 | 0.00 |
tarjan | 195.71 | 5.11 | 0.02 |
tarjan all | 191.98 | 5.21 | 0.02 |
topologicalSort | 155.83 | 6.42 | 0.03 |
hash-map
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000,000 set | 129.78 | 7.71 | 0.05 |
1,000,000 Map set | 276.67 | 3.61 | 0.03 |
1,000,000 Set add | 239.70 | 4.17 | 0.04 |
1,000,000 set & get | 143.96 | 6.95 | 0.04 |
1,000,000 Map set & get | 371.31 | 2.69 | 0.10 |
1,000,000 Set add & has | 247.24 | 4.04 | 0.05 |
1,000,000 ObjKey set & get | 396.42 | 2.52 | 0.06 |
1,000,000 Map ObjKey set & get | 411.40 | 2.43 | 0.10 |
1,000,000 Set ObjKey add & has | 357.45 | 2.80 | 0.05 |
heap
test name | time taken (ms) | executions per sec | sample deviation |
---|
100,000 add & pop | 88.96 | 11.24 | 0.02 |
100,000 add & dfs | 38.81 | 25.77 | 0.01 |
10,000 fib add & pop | 399.77 | 2.50 | 0.01 |
doubly-linked-list
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000,000 push | 264.62 | 3.78 | 0.08 |
1,000,000 unshift | 264.00 | 3.79 | 0.05 |
1,000,000 unshift & shift | 211.89 | 4.72 | 0.07 |
1,000,000 insertBefore | 467.62 | 2.14 | 0.22 |
singly-linked-list
test name | time taken (ms) | executions per sec | sample deviation |
---|
10,000 push & pop | 260.65 | 3.84 | 0.04 |
10,000 insertBefore | 283.61 | 3.53 | 0.02 |
max-priority-queue
test name | time taken (ms) | executions per sec | sample deviation |
---|
10,000 refill & poll | 10.29 | 97.16 | 0.00 |
priority-queue
test name | time taken (ms) | executions per sec | sample deviation |
---|
100,000 add & pop | 117.05 | 8.54 | 0.02 |
deque
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000,000 push | 15.96 | 62.68 | 0.00 |
1,000,000 push & pop | 25.90 | 38.61 | 0.01 |
1,000,000 push & shift | 26.33 | 37.98 | 0.00 |
1,000,000 unshift & shift | 24.90 | 40.16 | 0.00 |
queue
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000,000 push | 44.53 | 22.46 | 0.01 |
1,000,000 push & shift | 92.57 | 10.80 | 0.02 |
stack
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000,000 push | 59.07 | 16.93 | 0.02 |
1,000,000 push & pop | 52.68 | 18.98 | 0.02 |
trie
test name | time taken (ms) | executions per sec | sample deviation |
---|
100,000 push | 68.45 | 14.61 | 0.02 |
100,000 getWords | 134.22 | 7.45 | 0.04 |
[//]: # (No deletion!!! End of Replace Section)
## Built-in classic algorithms
Algorithm |
Function Description |
Iteration Type |
Binary Tree DFS |
Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree,
and then the right subtree, using recursion.
|
Recursion + Iteration |
Binary Tree BFS |
Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level
from left to right.
|
Iteration |
Graph DFS |
Traverse a graph in a depth-first manner, starting from a given node, exploring along one path as deeply as
possible, and backtracking to explore other paths. Used for finding connected components, paths, etc.
|
Recursion + Iteration |
Binary Tree Morris |
Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree
traversal without additional stack or recursion.
|
Iteration |
Graph BFS |
Traverse a graph in a breadth-first manner, starting from a given node, first visiting nodes directly connected
to the starting node, and then expanding level by level. Used for finding shortest paths, etc.
|
Recursion + Iteration |
Graph Tarjan's Algorithm |
Find strongly connected components in a graph, typically implemented using depth-first search. |
Recursion |
Graph Bellman-Ford Algorithm |
Finding the shortest paths from a single source, can handle negative weight edges |
Iteration |
Graph Dijkstra's Algorithm |
Finding the shortest paths from a single source, cannot handle negative weight edges |
Iteration |
Graph Floyd-Warshall Algorithm |
Finding the shortest paths between all pairs of nodes |
Iteration |
Graph getCycles |
Find all cycles in a graph or detect the presence of cycles. |
Recursion |
Graph getCutVertexes |
Find cut vertices in a graph, which are nodes that, when removed, increase the number of connected components in
the graph.
|
Recursion |
Graph getSCCs |
Find strongly connected components in a graph, which are subgraphs where any two nodes can reach each other.
|
Recursion |
Graph getBridges |
Find bridges in a graph, which are edges that, when removed, increase the number of connected components in the
graph.
|
Recursion |
Graph topologicalSort |
Perform topological sorting on a directed acyclic graph (DAG) to find a linear order of nodes such that all
directed edges go from earlier nodes to later nodes.
|
Recursion |
## Software Engineering Design Standards
Principle |
Description |
Practicality |
Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names. |
Extensibility |
Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures. |
Modularization |
Includes data structure modularization and independent NPM packages. |
Efficiency |
All methods provide time and space complexity, comparable to native JS performance. |
Maintainability |
Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns. |
Testability |
Automated and customized unit testing, performance testing, and integration testing. |
Portability |
Plans for porting to Java, Python, and C++, currently achieved to 80%. |
Reusability |
Fully decoupled, minimized side effects, and adheres to OOP. |
Security |
Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects. |
Scalability |
Data structure software does not involve load issues. |