# Data Structure Typed ![npm](https://img.shields.io/npm/v/data-structure-typed) ![npm](https://img.shields.io/npm/dm/data-structure-typed) ![npm package minimized gzipped size (select exports)](https://img.shields.io/bundlejs/size/data-structure-typed) ![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed) ![eslint](https://aleen42.github.io/badges/src/eslint.svg) ![NPM](https://img.shields.io/npm/l/data-structure-typed) [//]: # (![npm bundle size](https://img.shields.io/bundlephobia/min/data-structure-typed)) Data Structures of Javascript & TypeScript. Do you envy C++ with [STL](), Python with [collections](), and Java with [java.util]() ? Well, no need to envy anymore! JavaScript and TypeScript now have [data-structure-typed](). Now you can use this library in Node.js and browser environments in CommonJS(require export.modules = ), ESModule(import export), Typescript(import export), UMD(var Queue = dataStructureTyped.Queue) [//]: # (![Branches](https://img.shields.io/badge/branches-55.47%25-red.svg?style=flat)) [//]: # (![Statements](https://img.shields.io/badge/statements-67%25-red.svg?style=flat)) [//]: # (![Functions](https://img.shields.io/badge/functions-66.38%25-red.svg?style=flat)) [//]: # (![Lines](https://img.shields.io/badge/lines-68.6%25-red.svg?style=flat)) ## Installation and Usage ### npm ```bash npm i data-structure-typed ``` ### yarn ```bash yarn add data-structure-typed ``` ```js import { BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList, AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap, DirectedVertex, AVLTreeNode } from 'data-structure-typed'; ``` ### CDN Copy the line below into the head tag in an HTML document. ```html ``` Copy the code below into the script tag of your HTML, and you're good to go with your development work. ```js const {Heap} = dataStructureTyped; const { BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList, AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap, DirectedVertex, AVLTreeNode } = dataStructureTyped; ``` ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/binary-tree-array-to-binary-tree.webp) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/binary-tree-dfs-in-order.webp) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/avl-tree-test.webp) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/tree-multimap-test.webp) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/matrix-cut-off-tree-for-golf.webp) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/directed-graph-test.webp) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/map-graph-test.webp) ## Code Snippets ### Binary Search Tree (BST) snippet #### TS ```ts import {BST, BSTNode} from 'data-structure-typed'; const bst = new BST(); bst.add(11); bst.add(3); bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]); bst.size === 16; // true bst.has(6); // true const node6 = bst.getNode(6); // BSTNode bst.getHeight(6) === 2; // true bst.getHeight() === 5; // true bst.getDepth(6) === 3; // true bst.getLeftMost()?.key === 1; // true bst.delete(6); bst.get(6); // undefined bst.isAVLBalanced(); // true bst.bfs()[0] === 11; // true const objBST = new BST<{height: number, age: number}>(); objBST.add(11, { "name": "Pablo", "age": 15 }); objBST.add(3, { "name": "Kirk", "age": 1 }); objBST.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5], [ { "name": "Alice", "age": 15 }, { "name": "Bob", "age": 1 }, { "name": "Charlie", "age": 8 }, { "name": "David", "age": 13 }, { "name": "Emma", "age": 16 }, { "name": "Frank", "age": 2 }, { "name": "Grace", "age": 6 }, { "name": "Hannah", "age": 9 }, { "name": "Isaac", "age": 12 }, { "name": "Jack", "age": 14 }, { "name": "Katie", "age": 4 }, { "name": "Liam", "age": 7 }, { "name": "Mia", "age": 10 }, { "name": "Noah", "age": 5 } ] ); objBST.delete(11); ``` #### JS ```js const {BST, BSTNode} = require('data-structure-typed'); const bst = new BST(); bst.add(11); bst.add(3); bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]); bst.size === 16; // true bst.has(6); // true const node6 = bst.getNode(6); bst.getHeight(6) === 2; // true bst.getHeight() === 5; // true bst.getDepth(6) === 3; // true const leftMost = bst.getLeftMost(); leftMost?.key === 1; // true bst.delete(6); bst.get(6); // undefined bst.isAVLBalanced(); // true or false const bfsIDs = bst.bfs(); bfsIDs[0] === 11; // true ``` ### AVLTree snippet #### TS ```ts import {AVLTree} from 'data-structure-typed'; const avlTree = new AVLTree(); avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]) avlTree.isAVLBalanced(); // true avlTree.delete(10); avlTree.isAVLBalanced(); // true ``` #### JS ```js const {AVLTree} = require('data-structure-typed'); const avlTree = new AVLTree(); avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]) avlTree.isAVLBalanced(); // true avlTree.delete(10); avlTree.isAVLBalanced(); // true ``` ### Directed Graph simple snippet #### TS or JS ```ts import {DirectedGraph} from 'data-structure-typed'; const graph = new DirectedGraph(); graph.addVertex('A'); graph.addVertex('B'); graph.hasVertex('A'); // true graph.hasVertex('B'); // true graph.hasVertex('C'); // false graph.addEdge('A', 'B'); graph.hasEdge('A', 'B'); // true graph.hasEdge('B', 'A'); // false graph.deleteEdgeSrcToDest('A', 'B'); graph.hasEdge('A', 'B'); // false graph.addVertex('C'); graph.addEdge('A', 'B'); graph.addEdge('B', 'C'); const topologicalOrderKeys = graph.topologicalSort(); // ['A', 'B', 'C'] ``` ### Undirected Graph snippet #### TS or JS ```ts import {UndirectedGraph} from 'data-structure-typed'; const graph = new UndirectedGraph(); graph.addVertex('A'); graph.addVertex('B'); graph.addVertex('C'); graph.addVertex('D'); graph.deleteVertex('C'); graph.addEdge('A', 'B'); graph.addEdge('B', 'D'); const dijkstraResult = graph.dijkstra('A'); Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.key) // ['A', 'B', 'D'] ``` ## Built-in classic algorithms
Algorithm Function Description Iteration Type
Binary Tree DFS Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree, and then the right subtree, using recursion. Recursion + Iteration
Binary Tree BFS Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level from left to right. Iteration
Graph DFS Traverse a graph in a depth-first manner, starting from a given node, exploring along one path as deeply as possible, and backtracking to explore other paths. Used for finding connected components, paths, etc. Recursion + Iteration
Binary Tree Morris Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree traversal without additional stack or recursion. Iteration
Graph BFS Traverse a graph in a breadth-first manner, starting from a given node, first visiting nodes directly connected to the starting node, and then expanding level by level. Used for finding shortest paths, etc. Recursion + Iteration
Graph Tarjan's Algorithm Find strongly connected components in a graph, typically implemented using depth-first search. Recursion
Graph Bellman-Ford Algorithm Finding the shortest paths from a single source, can handle negative weight edges Iteration
Graph Dijkstra's Algorithm Finding the shortest paths from a single source, cannot handle negative weight edges Iteration
Graph Floyd-Warshall Algorithm Finding the shortest paths between all pairs of nodes Iteration
Graph getCycles Find all cycles in a graph or detect the presence of cycles. Recursion
Graph getCutVertexes Find cut vertices in a graph, which are nodes that, when removed, increase the number of connected components in the graph. Recursion
Graph getSCCs Find strongly connected components in a graph, which are subgraphs where any two nodes can reach each other. Recursion
Graph getBridges Find bridges in a graph, which are edges that, when removed, increase the number of connected components in the graph. Recursion
Graph topologicalSort Perform topological sorting on a directed acyclic graph (DAG) to find a linear order of nodes such that all directed edges go from earlier nodes to later nodes. Recursion
## API docs & Examples [API Docs](https://data-structure-typed-docs.vercel.app) [Live Examples](https://vivid-algorithm.vercel.app) Examples Repository ## Data Structures
Data Structure Unit Test Performance Test API Documentation Implemented
Binary Tree Binary Tree
Binary Search Tree (BST) BST
AVL Tree AVLTree
Red Black Tree RedBlackTree
Tree Multiset TreeMultimap
Segment Tree SegmentTree
Binary Indexed Tree BinaryIndexedTree
Graph AbstractGraph
Directed Graph DirectedGraph
Undirected Graph UndirectedGraph
Linked List SinglyLinkedList
Singly Linked List SinglyLinkedList
Doubly Linked List DoublyLinkedList
Queue Queue
Object Deque ObjectDeque
Array Deque ArrayDeque
Stack Stack
Coordinate Set CoordinateSet
Coordinate Map CoordinateMap
Heap Heap
Priority Queue PriorityQueue
Max Priority Queue MaxPriorityQueue
Min Priority Queue MinPriorityQueue
Trie Trie
### Standard library data structure comparison
Data Structure Typed C++ STL java.util Python collections
DoublyLinkedList<E> list<T> LinkedList<E> deque
SinglyLinkedList<E> - - -
Array<E> vector<T> ArrayList<E> list
Queue<E> queue<T> Queue<E> -
Deque<E> deque<T> - -
PriorityQueue<E> priority_queue<T> PriorityQueue<E> -
Heap<E> priority_queue<T> PriorityQueue<E> heapq
Stack<E> stack<T> Stack<E> -
Set<E> set<T> HashSet<E> set
Map<K, V> map<K, V> HashMap<K, V> dict
- unordered_set<T> HashSet<E> -
HashMap<K, V> unordered_map<K, V> HashMap<K, V> defaultdict
Map<K, V> - - OrderedDict
BinaryTree<K, V> - - -
BST<K, V> - - -
TreeMultimap<K, V> multimap<K, V> - -
AVLTree<E> - TreeSet<E> -
AVLTree<K, V> - TreeMap<K, V> -
AVLTree<E> set TreeSet<E> -
Trie - - -
- multiset<T> - -
DirectedGraph<V, E> - - -
UndirectedGraph<V, E> - - -
- unordered_multiset - Counter
- - LinkedHashSet<E> -
- - LinkedHashMap<K, V> -
- unordered_multimap<K, V> - -
- bitset<N> - -
## Code design ### Adhere to ES6 standard naming conventions for APIs. Standardize API conventions by using 'add' and 'delete' for element manipulation methods in all data structures. Opt for concise and clear method names, avoiding excessive length while ensuring explicit intent. ### Object-oriented programming(OOP) By strictly adhering to object-oriented design (BinaryTree -> BST -> AVLTree -> TreeMultimap), you can seamlessly inherit the existing data structures to implement the customized ones you need. Object-oriented design stands as the optimal approach to data structure design. ## Benchmark [//]: # (No deletion!!! Start of Replace Section)
avl-tree
test nametime taken (ms)executions per secsample deviation
10,000 add randomly33.6029.760.00
10,000 add & delete randomly72.3913.810.01
10,000 addMany41.0624.350.00
10,000 get28.0135.710.00
binary-tree
test nametime taken (ms)executions per secsample deviation
1,000 add randomly12.6479.096.90e-4
1,000 add & delete randomly16.0362.385.30e-4
1,000 addMany10.4495.780.00
1,000 get18.1954.983.11e-4
1,000 dfs154.716.460.00
1,000 bfs56.9717.558.92e-4
1,000 morris260.713.840.00
bst
test nametime taken (ms)executions per secsample deviation
10,000 add randomly29.5733.812.75e-4
10,000 add & delete randomly70.7814.130.00
10,000 addMany29.1034.366.84e-4
10,000 get28.7534.786.05e-4
rb-tree
test nametime taken (ms)executions per secsample deviation
100,000 add randomly88.5511.290.01
100,000 add & delete randomly220.414.540.01
100,000 getNode37.5226.652.68e-4
directed-graph
test nametime taken (ms)executions per secsample deviation
1,000 addVertex0.109804.121.07e-6
1,000 addEdge6.06165.111.66e-4
1,000 getVertex0.052.17e+43.48e-7
1,000 getEdge23.2643.000.00
tarjan223.274.480.01
tarjan all224.274.460.00
topologicalSort179.195.580.00
heap
test nametime taken (ms)executions per secsample deviation
10,000 add & pop4.62216.393.75e-5
10,000 fib add & pop354.572.820.00
doubly-linked-list
test nametime taken (ms)executions per secsample deviation
1,000,000 unshift225.574.430.02
1,000,000 unshift & shift164.916.060.02
1,000,000 insertBefore342.062.920.09
singly-linked-list
test nametime taken (ms)executions per secsample deviation
10,000 push & pop224.204.460.02
10,000 insertBefore244.964.080.00
max-priority-queue
test nametime taken (ms)executions per secsample deviation
10,000 refill & poll11.4587.321.74e-4
deque
test nametime taken (ms)executions per secsample deviation
1,000,000 push222.744.490.08
1,000,000 shift26.4837.770.00
queue
test nametime taken (ms)executions per secsample deviation
1,000,000 push45.5021.980.01
1,000,000 push & shift80.1012.480.00
trie
test nametime taken (ms)executions per secsample deviation
100,000 push56.9917.550.01
100,000 getWords98.4310.160.01
[//]: # (No deletion!!! End of Replace Section)