test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
100,000 add | 6.42 | 155.87 | 1.90e-4 |
100,000 add & poll | 31.50 | 31.74 | 8.72e-4 |
# data-structure-typed ![npm](https://img.shields.io/npm/dm/data-structure-typed) ![GitHub contributors](https://img.shields.io/github/contributors/zrwusa/data-structure-typed) ![npm package minimized gzipped size (select exports)](https://img.shields.io/bundlejs/size/data-structure-typed) ![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed) ![GITHUB Star](https://img.shields.io/github/stars/zrwusa/data-structure-typed) ![eslint](https://aleen42.github.io/badges/src/eslint.svg) ![NPM](https://img.shields.io/npm/l/data-structure-typed) ![npm](https://img.shields.io/npm/v/data-structure-typed) [//]: # (![npm bundle size](https://img.shields.io/bundlephobia/min/data-structure-typed)) [//]: # (
) ## Why Do you envy C++ with [STL]() (std::), Python with [collections](), and Java with [java.util]() ? Well, no need to envy anymore! JavaScript and TypeScript now have [data-structure-typed]().**`Benchmark`** compared with C++ STL. * *`API standards`** aligned with ES6 and Java. **`Usability`** is comparable to Python [//]: # (![Branches](https://img.shields.io/badge/branches-55.47%25-red.svg?style=flat)) [//]: # (![Statements](https://img.shields.io/badge/statements-67%25-red.svg?style=flat)) [//]: # (![Functions](https://img.shields.io/badge/functions-66.38%25-red.svg?style=flat)) [//]: # (![Lines](https://img.shields.io/badge/lines-68.6%25-red.svg?style=flat)) ### Data structures available We provide data structures that are not available in JS/TS Heap, Binary Tree, Red Black Tree, Linked List, Deque, Trie, Directed Graph, Undirected Graph, BST, AVL Tree, Priority Queue, Queue, Tree Multiset. ### Performance Performance surpasses that of native JS/TSMethod | Time Taken | Data Scale | Belongs To | Complexity |
---|---|---|---|---|
Queue.push & shift | 5.83 ms | 100,000 | Ours | O(1) |
Array.push & shift | 2829.59 ms | 100,000 | Native JS | O(n) |
Deque.unshift & shift | 2.44 ms | 100,000 | Ours | O(1) |
Array.unshift & shift | 4750.37 ms | 100,000 | Native JS | O(n) |
HashMap.set | 122.51 ms | 1,000,000 | Ours | O(1) |
Map.set | 223.80 ms | 1,000,000 | Native JS | O(1) |
Set.add | 185.06 ms | 1,000,000 | Native JS | O(1) |
Operation | Java ArrayList | Java Queue | Java ArrayDeque | Java LinkedList |
---|---|---|---|---|
push | add | offer | push | push |
pop | remove | poll | removeLast | removeLast |
shift | remove | poll | removeFirst | removeFirst |
unshift | add(0, element) | offerFirst | unshift | unshift |
Data Structure | Unit Test | Performance Test | API Docs |
---|---|---|---|
Binary Tree | View | ||
Binary Search Tree (BST) | View | ||
AVL Tree | View | ||
Red Black Tree | View | ||
Tree Multimap | View | ||
Heap | View | ||
Priority Queue | View | ||
Max Priority Queue | View | ||
Min Priority Queue | View | ||
Trie | View | ||
Graph | View | ||
Directed Graph | View | ||
Undirected Graph | View | ||
Queue | View | ||
Deque | View | ||
Hash Map | View | ||
Linked List | View | ||
Singly Linked List | View | ||
Doubly Linked List | View | ||
Stack | View | ||
Segment Tree | View | ||
Binary Indexed Tree | View |
Data Structure Typed | C++ STL | java.util | Python collections |
---|---|---|---|
Heap<E> | - | - | heapq |
PriorityQueue<E> | priority_queue<T> | PriorityQueue<E> | - |
Deque<E> | deque<T> | ArrayDeque<E> | deque |
Queue<E> | queue<T> | Queue<E> | - |
HashMap<K, V> | unordered_map<K, V> | HashMap<K, V> | defaultdict |
DoublyLinkedList<E> | list<T> | LinkedList<E> | - |
SinglyLinkedList<E> | - | - | - |
BinaryTree<K, V> | - | - | - |
BST<K, V> | - | - | - |
RedBlackTree<E> | set<T> | TreeSet<E> | - |
RedBlackTree<K, V> | map<K, V> | TreeMap<K, V> | - |
TreeMultiMap<K, V> | multimap<K, V> | - | - |
TreeMultiMap<E> | multiset<T> | - | - |
Trie | - | - | - |
DirectedGraph<V, E> | - | - | - |
UndirectedGraph<V, E> | - | - | - |
PriorityQueue<E> | priority_queue<T> | PriorityQueue<E> | - |
Array<E> | vector<T> | ArrayList<E> | list |
Stack<E> | stack<T> | Stack<E> | - |
HashMap<E> | unordered_set<T> | HashSet<E> | set |
- | unordered_multiset | - | Counter |
LinkedHashMap<K, V> | - | LinkedHashMap<K, V> | OrderedDict |
- | unordered_multimap<K, V> | - | - |
- | bitset<N> | - | - |
Algorithm | Function Description | Iteration Type |
---|---|---|
Binary Tree DFS | Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree, and then the right subtree, using recursion. | Recursion + Iteration |
Binary Tree BFS | Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level from left to right. | Iteration |
Graph DFS | Traverse a graph in a depth-first manner, starting from a given node, exploring along one path as deeply as possible, and backtracking to explore other paths. Used for finding connected components, paths, etc. | Recursion + Iteration |
Binary Tree Morris | Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree traversal without additional stack or recursion. | Iteration |
Graph BFS | Traverse a graph in a breadth-first manner, starting from a given node, first visiting nodes directly connected to the starting node, and then expanding level by level. Used for finding shortest paths, etc. | Recursion + Iteration |
Graph Tarjan's Algorithm | Find strongly connected components in a graph, typically implemented using depth-first search. | Recursion |
Graph Bellman-Ford Algorithm | Finding the shortest paths from a single source, can handle negative weight edges | Iteration |
Graph Dijkstra's Algorithm | Finding the shortest paths from a single source, cannot handle negative weight edges | Iteration |
Graph Floyd-Warshall Algorithm | Finding the shortest paths between all pairs of nodes | Iteration |
Graph getCycles | Find all cycles in a graph or detect the presence of cycles. | Recursion |
Graph getCutVertices | Find cut vertices in a graph, which are nodes that, when removed, increase the number of connected components in the graph. | Recursion |
Graph getSCCs | Find strongly connected components in a graph, which are subgraphs where any two nodes can reach each other. | Recursion |
Graph getBridges | Find bridges in a graph, which are edges that, when removed, increase the number of connected components in the graph. | Recursion |
Graph topologicalSort | Perform topological sorting on a directed acyclic graph (DAG) to find a linear order of nodes such that all directed edges go from earlier nodes to later nodes. | Recursion |
Principle | Description |
---|---|
Practicality | Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names. |
Extensibility | Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures. |
Modularization | Includes data structure modularization and independent NPM packages. |
Efficiency | All methods provide time and space complexity, comparable to native JS performance. |
Maintainability | Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns. |
Testability | Automated and customized unit testing, performance testing, and integration testing. |
Portability | Plans for porting to Java, Python, and C++, currently achieved to 80%. |
Reusability | Fully decoupled, minimized side effects, and adheres to OOP. |
Security | Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects. |
Scalability | Data structure software does not involve load issues. |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
100,000 add | 6.42 | 155.87 | 1.90e-4 |
100,000 add & poll | 31.50 | 31.74 | 8.72e-4 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
100,000 add orderly | 42.46 | 23.55 | 0.01 |
100,000 delete orderly | 176.04 | 5.68 | 0.01 |
100,000 add randomly | 98.02 | 10.20 | 0.00 |
100,000 delete randomly | 182.58 | 5.48 | 0.00 |
100,000 add orderly | 42.10 | 23.76 | 8.79e-4 |
100,000 delete randomly | 182.16 | 5.49 | 5.65e-4 |
100,000 getNode randomly | 180.63 | 5.54 | 0.00 |
100,000 add & iterator | 129.92 | 7.70 | 0.00 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 push | 44.33 | 22.56 | 0.01 |
100,000 push & shift | 4.68 | 213.63 | 1.41e-4 |
Native JS Array 100,000 push & shift | 2633.11 | 0.38 | 0.44 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 push | 24.62 | 40.62 | 0.00 |
1,000,000 push & pop | 30.71 | 32.56 | 0.00 |
1,000,000 push & shift | 31.93 | 31.32 | 0.01 |
100,000 push & shift | 3.25 | 307.22 | 2.74e-4 |
Native JS Array 100,000 push & shift | 2455.51 | 0.41 | 0.29 |
100,000 unshift & shift | 2.94 | 340.31 | 2.39e-4 |
Native JS Array 100,000 unshift & shift | 4314.20 | 0.23 | 0.41 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 set | 116.60 | 8.58 | 0.02 |
Native JS Map 1,000,000 set | 202.39 | 4.94 | 0.01 |
Native JS Set 1,000,000 add | 167.89 | 5.96 | 0.01 |
1,000,000 set & get | 125.21 | 7.99 | 0.03 |
Native JS Map 1,000,000 set & get | 272.20 | 3.67 | 0.03 |
Native JS Set 1,000,000 add & has | 168.51 | 5.93 | 0.01 |
1,000,000 ObjKey set & get | 309.10 | 3.24 | 0.01 |
Native JS Map 1,000,000 ObjKey set & get | 299.43 | 3.34 | 0.03 |
Native JS Set 1,000,000 ObjKey add & has | 260.93 | 3.83 | 0.02 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
100,000 push | 43.32 | 23.08 | 6.16e-4 |
100,000 getWords | 84.84 | 11.79 | 0.00 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
10,000 add randomly | 129.04 | 7.75 | 0.00 |
10,000 get | 51.31 | 19.49 | 5.76e-4 |
10,000 add & delete randomly | 190.44 | 5.25 | 0.00 |
10,000 addMany | 137.94 | 7.25 | 0.00 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
10,000 RBTree add | 8.13 | 122.97 | 1.87e-4 |
10,000 RBTree add & delete randomly | 58.30 | 17.15 | 5.24e-4 |
10,000 RBTree get | 18.16 | 55.06 | 2.06e-4 |
10,000 AVLTree add | 129.10 | 7.75 | 0.00 |
10,000 AVLTree get | 51.37 | 19.47 | 7.26e-4 |
10,000 AVLTree add & delete randomly | 189.84 | 5.27 | 8.96e-4 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000 addVertex | 0.10 | 9882.73 | 1.12e-6 |
1,000 addEdge | 6.18 | 161.76 | 7.54e-4 |
1,000 getVertex | 0.05 | 2.17e+4 | 3.35e-7 |
1,000 getEdge | 23.36 | 42.81 | 0.00 |
tarjan | 208.84 | 4.79 | 0.01 |
topologicalSort | 178.78 | 5.59 | 0.00 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 push | 217.73 | 4.59 | 0.05 |
1,000,000 unshift | 200.41 | 4.99 | 0.04 |
1,000,000 unshift & shift | 168.75 | 5.93 | 0.04 |
1,000,000 addBefore | 298.21 | 3.35 | 0.06 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 push & shift | 196.65 | 5.09 | 0.04 |
10,000 push & pop | 221.63 | 4.51 | 0.02 |
10,000 addBefore | 249.40 | 4.01 | 0.01 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
100,000 add | 28.95 | 34.55 | 0.00 |
100,000 add & poll | 76.25 | 13.11 | 6.57e-4 |
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000,000 push | 39.72 | 25.18 | 0.01 |
1,000,000 push & pop | 49.18 | 20.33 | 0.01 |