# Data Structure Typed
![npm](https://img.shields.io/npm/v/data-structure-typed)
![npm](https://img.shields.io/npm/dm/data-structure-typed)
![npm package minimized gzipped size (select exports)](https://img.shields.io/bundlejs/size/data-structure-typed)
![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed)
![eslint](https://aleen42.github.io/badges/src/eslint.svg)
![NPM](https://img.shields.io/npm/l/data-structure-typed)
[//]: # (![npm bundle size](https://img.shields.io/bundlephobia/min/data-structure-typed))
Data Structures of Javascript & TypeScript.
Do you envy C++ with [STL]() (std::), Python with [collections](), and Java with [java.util]() ? Well, no need to envy anymore! JavaScript and TypeScript now have [data-structure-typed]().
Now you can use this in Node.js and browser environments
CommonJS:**`require export.modules =`**
ESModule: **`import export`**
Typescript: **`import export`**
UMD: **`var Deque = dataStructureTyped.Deque`**
[//]: # (![Branches](https://img.shields.io/badge/branches-55.47%25-red.svg?style=flat))
[//]: # (![Statements](https://img.shields.io/badge/statements-67%25-red.svg?style=flat))
[//]: # (![Functions](https://img.shields.io/badge/functions-66.38%25-red.svg?style=flat))
[//]: # (![Lines](https://img.shields.io/badge/lines-68.6%25-red.svg?style=flat))
## Installation and Usage
### npm
```bash
npm i data-structure-typed --save
```
### yarn
```bash
yarn add data-structure-typed
```
```js
import {
BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList,
AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap,
DirectedVertex, AVLTreeNode
} from 'data-structure-typed';
```
### CDN
Copy the line below into the head tag in an HTML document.
#### development
```html
```
#### production
```html
```
Copy the code below into the script tag of your HTML, and you're good to go with your development.
```js
const {Heap} = dataStructureTyped;
const {
BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList,
AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap,
DirectedVertex, AVLTreeNode
} = dataStructureTyped;
```
## Vivid Examples
### Binary Tree
[Try it out](https://vivid-algorithm.vercel.app/), or you can run your own code using our [visual tool](https://github.com/zrwusa/vivid-algorithm)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/binary-tree-array-to-binary-tree.webp)
### Binary Tree DFS
[Try it out](https://vivid-algorithm.vercel.app/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/binary-tree-dfs-in-order.webp)
### AVL Tree
[Try it out](https://vivid-algorithm.vercel.app/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/avl-tree-test.webp)
### Tree Multi Map
[Try it out](https://vivid-algorithm.vercel.app/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/tree-multiset-test.webp)
### Matrix
[Try it out](https://vivid-algorithm.vercel.app/algorithm/graph/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/matrix-cut-off-tree-for-golf.webp)
### Directed Graph
[Try it out](https://vivid-algorithm.vercel.app/algorithm/graph/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/directed-graph-test.webp)
### Map Graph
[Try it out](https://vivid-algorithm.vercel.app/algorithm/graph/)
![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/map-graph-test.webp)
## Code Snippets
### Binary Search Tree (BST) snippet
#### TS
```ts
import {BST, BSTNode} from 'data-structure-typed';
const bst = new BST();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16; // true
bst.has(6); // true
const node6 = bst.getNode(6); // BSTNode
bst.getHeight(6) === 2; // true
bst.getHeight() === 5; // true
bst.getDepth(6) === 3; // true
bst.getLeftMost()?.key === 1; // true
bst.delete(6);
bst.get(6); // undefined
bst.isAVLBalanced(); // true
bst.bfs()[0] === 11; // true
bst.print()
// ______________11_____
// / \
// ___3_______ _13_____
// / \ / \
// 1_ _____8____ 12 _15__
// \ / \ / \
// 2 4_ _10 14 16
// \ /
// 5_ 9
// \
// 7
const objBST = new BST<{height: number, age: number}>();
objBST.add(11, { "name": "Pablo", "age": 15 });
objBST.add(3, { "name": "Kirk", "age": 1 });
objBST.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5], [
{ "name": "Alice", "age": 15 },
{ "name": "Bob", "age": 1 },
{ "name": "Charlie", "age": 8 },
{ "name": "David", "age": 13 },
{ "name": "Emma", "age": 16 },
{ "name": "Frank", "age": 2 },
{ "name": "Grace", "age": 6 },
{ "name": "Hannah", "age": 9 },
{ "name": "Isaac", "age": 12 },
{ "name": "Jack", "age": 14 },
{ "name": "Katie", "age": 4 },
{ "name": "Liam", "age": 7 },
{ "name": "Mia", "age": 10 },
{ "name": "Noah", "age": 5 }
]
);
objBST.delete(11);
```
#### JS
```js
const {BST, BSTNode} = require('data-structure-typed');
const bst = new BST();
bst.add(11);
bst.add(3);
bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]);
bst.size === 16; // true
bst.has(6); // true
const node6 = bst.getNode(6);
bst.getHeight(6) === 2; // true
bst.getHeight() === 5; // true
bst.getDepth(6) === 3; // true
const leftMost = bst.getLeftMost();
leftMost?.key === 1; // true
bst.delete(6);
bst.get(6); // undefined
bst.isAVLBalanced(); // true or false
const bfsIDs = bst.bfs();
bfsIDs[0] === 11; // true
```
### AVLTree snippet
```ts
import {AVLTree} from 'data-structure-typed';
const avlTree = new AVLTree();
avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
avlTree.isAVLBalanced(); // true
avlTree.delete(10);
avlTree.isAVLBalanced(); // true
```
### RedBlackTree snippet
```ts
import {RedBlackTree} from 'data-structure-typed';
const rbTree = new RedBlackTree();
rbTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5])
rbTree.isAVLBalanced(); // true
rbTree.delete(10);
rbTree.isAVLBalanced(); // true
rbTree.print()
// ___6________
// / \
// ___4_ ___11________
// / \ / \
// _2_ 5 _8_ ____14__
// / \ / \ / \
// 1 3 7 9 12__ 15__
// \ \
// 13 16
```
### Directed Graph simple snippet
```ts
import {DirectedGraph} from 'data-structure-typed';
const graph = new DirectedGraph();
graph.addVertex('A');
graph.addVertex('B');
graph.hasVertex('A'); // true
graph.hasVertex('B'); // true
graph.hasVertex('C'); // false
graph.addEdge('A', 'B');
graph.hasEdge('A', 'B'); // true
graph.hasEdge('B', 'A'); // false
graph.deleteEdgeSrcToDest('A', 'B');
graph.hasEdge('A', 'B'); // false
graph.addVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'C');
const topologicalOrderKeys = graph.topologicalSort(); // ['A', 'B', 'C']
```
### Undirected Graph snippet
```ts
import {UndirectedGraph} from 'data-structure-typed';
const graph = new UndirectedGraph();
graph.addVertex('A');
graph.addVertex('B');
graph.addVertex('C');
graph.addVertex('D');
graph.deleteVertex('C');
graph.addEdge('A', 'B');
graph.addEdge('B', 'D');
const dijkstraResult = graph.dijkstra('A');
Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.key) // ['A', 'B', 'D']
```
## API docs & Examples
[API Docs](https://data-structure-typed-docs.vercel.app)
[Live Examples](https://vivid-algorithm.vercel.app)
Examples Repository
## Data Structures
## Standard library data structure comparison
Data Structure Typed |
C++ STL |
java.util |
Python collections |
Heap<E> |
priority_queue<T> |
PriorityQueue<E> |
heapq |
Deque<E> |
deque<T> |
ArrayDeque<E> |
deque |
Queue<E> |
queue<T> |
Queue<E> |
- |
HashMap<K, V> |
unordered_map<K, V> |
HashMap<K, V> |
defaultdict |
DoublyLinkedList<E> |
list<T> |
LinkedList<E> |
- |
SinglyLinkedList<E> |
- |
- |
- |
BinaryTree<K, V> |
- |
- |
- |
BST<K, V> |
- |
- |
- |
RedBlackTree<E> |
set<T> |
TreeSet<E> |
- |
RedBlackTree<K, V> |
map<K, V> |
TreeMap<K, V> |
- |
TreeMultimap<K, V> |
multimap<K, V> |
- |
- |
- |
multiset<T> |
- |
- |
Trie |
- |
- |
- |
DirectedGraph<V, E> |
- |
- |
- |
UndirectedGraph<V, E> |
- |
- |
- |
PriorityQueue<E> |
priority_queue<T> |
PriorityQueue<E> |
- |
Array<E> |
vector<T> |
ArrayList<E> |
list |
Stack<E> |
stack<T> |
Stack<E> |
- |
Set<E> |
- |
HashSet<E> |
set |
Map<K, V> |
- |
HashMap<K, V> |
dict |
- |
unordered_set<T> |
HashSet<E> |
- |
Map<K, V> |
- |
- |
OrderedDict |
- |
unordered_multiset |
- |
Counter |
- |
- |
LinkedHashSet<E> |
- |
HashMap<K, V> |
- |
LinkedHashMap<K, V> |
- |
- |
unordered_multimap<K, V> |
- |
- |
- |
bitset<N> |
- |
- |
## Benchmark
[//]: # (No deletion!!! Start of Replace Section)
avl-tree
test name | time taken (ms) | executions per sec | sample deviation |
---|
10,000 add randomly | 33.09 | 30.22 | 4.32e-4 |
10,000 add & delete randomly | 74.12 | 13.49 | 0.00 |
10,000 addMany | 41.71 | 23.97 | 0.00 |
10,000 get | 28.37 | 35.25 | 2.37e-4 |
binary-tree
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000 add randomly | 14.50 | 68.96 | 1.33e-4 |
1,000 add & delete randomly | 16.20 | 61.72 | 2.03e-4 |
1,000 addMany | 10.51 | 95.12 | 8.76e-5 |
1,000 get | 18.28 | 54.69 | 1.82e-4 |
1,000 dfs | 157.23 | 6.36 | 7.06e-4 |
1,000 bfs | 58.06 | 17.22 | 0.01 |
1,000 morris | 256.36 | 3.90 | 0.00 |
bst
test name | time taken (ms) | executions per sec | sample deviation |
---|
10,000 add randomly | 30.48 | 32.81 | 4.13e-4 |
10,000 add & delete randomly | 71.84 | 13.92 | 0.00 |
10,000 addMany | 29.54 | 33.85 | 5.25e-4 |
10,000 get | 30.53 | 32.75 | 0.01 |
rb-tree
test name | time taken (ms) | executions per sec | sample deviation |
---|
100,000 add | 90.89 | 11.00 | 0.00 |
100,000 CPT add | 50.65 | 19.74 | 0.00 |
100,000 add & delete randomly | 230.08 | 4.35 | 0.02 |
100,000 getNode | 38.97 | 25.66 | 5.82e-4 |
100,000 add & iterator | 118.32 | 8.45 | 0.01 |
comparison
test name | time taken (ms) | executions per sec | sample deviation |
---|
SRC PQ 10,000 add | 0.14 | 6939.33 | 1.74e-6 |
CJS PQ 10,000 add | 0.15 | 6881.64 | 1.91e-6 |
MJS PQ 10,000 add | 0.57 | 1745.92 | 1.60e-5 |
CPT PQ 10,000 add | 0.57 | 1744.71 | 1.01e-5 |
SRC PQ 10,000 add & pop | 3.51 | 284.93 | 6.79e-4 |
CJS PQ 10,000 add & pop | 3.42 | 292.55 | 4.04e-5 |
MJS PQ 10,000 add & pop | 3.41 | 293.38 | 5.11e-5 |
CPT PQ 10,000 add & pop | 2.09 | 478.76 | 2.28e-5 |
CPT OM 100,000 add | 43.22 | 23.14 | 0.00 |
CPT HM 10,000 set | 0.58 | 1721.25 | 1.85e-5 |
CPT HM 10,000 set & get | 0.68 | 1477.31 | 1.26e-5 |
CPT LL 1,000,000 unshift | 81.38 | 12.29 | 0.02 |
CPT PQ 10,000 add & pop | 2.10 | 476.50 | 1.60e-4 |
CPT DQ 1,000,000 push | 22.51 | 44.42 | 0.00 |
CPT Q 1,000,000 push | 47.85 | 20.90 | 0.01 |
CPT ST 1,000,000 push | 42.54 | 23.51 | 0.01 |
CPT ST 1,000,000 push & pop | 50.08 | 19.97 | 0.00 |
directed-graph
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000 addVertex | 0.11 | 9501.34 | 6.10e-6 |
1,000 addEdge | 6.35 | 157.55 | 6.69e-4 |
1,000 getVertex | 0.05 | 2.14e+4 | 2.50e-6 |
1,000 getEdge | 25.00 | 39.99 | 0.01 |
tarjan | 219.46 | 4.56 | 0.01 |
tarjan all | 218.15 | 4.58 | 0.00 |
topologicalSort | 176.83 | 5.66 | 0.00 |
hash-map
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000,000 set | 254.46 | 3.93 | 0.04 |
1,000,000 CPT set | 251.21 | 3.98 | 0.03 |
1,000,000 Map set | 211.27 | 4.73 | 0.01 |
1,000,000 Set add | 175.15 | 5.71 | 0.02 |
1,000,000 set & get | 370.54 | 2.70 | 0.11 |
1,000,000 CPT set & get | 283.34 | 3.53 | 0.07 |
1,000,000 Map set & get | 287.09 | 3.48 | 0.04 |
1,000,000 Set add & has | 190.50 | 5.25 | 0.01 |
1,000,000 ObjKey set & get | 880.47 | 1.14 | 0.10 |
1,000,000 Map ObjKey set & get | 334.47 | 2.99 | 0.05 |
1,000,000 Set ObjKey add & has | 310.12 | 3.22 | 0.06 |
heap
test name | time taken (ms) | executions per sec | sample deviation |
---|
100,000 add & pop | 80.13 | 12.48 | 0.00 |
100,000 add & dfs | 35.08 | 28.50 | 0.00 |
10,000 fib add & pop | 367.84 | 2.72 | 0.01 |
doubly-linked-list
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000,000 push | 237.28 | 4.21 | 0.07 |
1,000,000 CPT push | 75.66 | 13.22 | 0.03 |
1,000,000 unshift | 226.38 | 4.42 | 0.05 |
1,000,000 CPT unshift | 93.34 | 10.71 | 0.07 |
1,000,000 unshift & shift | 188.34 | 5.31 | 0.05 |
1,000,000 insertBefore | 329.60 | 3.03 | 0.05 |
singly-linked-list
test name | time taken (ms) | executions per sec | sample deviation |
---|
10,000 push & pop | 221.32 | 4.52 | 0.01 |
10,000 insertBefore | 255.52 | 3.91 | 0.01 |
max-priority-queue
test name | time taken (ms) | executions per sec | sample deviation |
---|
10,000 refill & poll | 9.07 | 110.24 | 2.71e-4 |
priority-queue
test name | time taken (ms) | executions per sec | sample deviation |
---|
100,000 add & pop | 101.93 | 9.81 | 7.95e-4 |
100,000 CPT add & pop | 28.54 | 35.04 | 0.00 |
deque
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000,000 push | 14.43 | 69.29 | 2.36e-4 |
1,000,000 CPT push | 25.08 | 39.87 | 0.01 |
1,000,000 push & pop | 22.87 | 43.72 | 6.05e-4 |
1,000,000 push & shift | 25.28 | 39.55 | 0.01 |
1,000,000 unshift & shift | 21.88 | 45.71 | 2.05e-4 |
queue
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000,000 push | 38.49 | 25.98 | 9.08e-4 |
1,000,000 CPT push | 43.93 | 22.76 | 0.01 |
1,000,000 push & shift | 82.85 | 12.07 | 0.00 |
stack
test name | time taken (ms) | executions per sec | sample deviation |
---|
1,000,000 push | 40.19 | 24.88 | 0.01 |
1,000,000 CPT push | 39.87 | 25.08 | 0.00 |
1,000,000 push & pop | 41.67 | 24.00 | 0.01 |
1,000,000 CPT push & pop | 46.65 | 21.44 | 0.00 |
trie
test name | time taken (ms) | executions per sec | sample deviation |
---|
100,000 push | 43.42 | 23.03 | 7.57e-4 |
100,000 getWords | 93.41 | 10.71 | 0.00 |
[//]: # (No deletion!!! End of Replace Section)
## Built-in classic algorithms
Algorithm |
Function Description |
Iteration Type |
Binary Tree DFS |
Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree,
and then the right subtree, using recursion.
|
Recursion + Iteration |
Binary Tree BFS |
Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level
from left to right.
|
Iteration |
Graph DFS |
Traverse a graph in a depth-first manner, starting from a given node, exploring along one path as deeply as
possible, and backtracking to explore other paths. Used for finding connected components, paths, etc.
|
Recursion + Iteration |
Binary Tree Morris |
Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree
traversal without additional stack or recursion.
|
Iteration |
Graph BFS |
Traverse a graph in a breadth-first manner, starting from a given node, first visiting nodes directly connected
to the starting node, and then expanding level by level. Used for finding shortest paths, etc.
|
Recursion + Iteration |
Graph Tarjan's Algorithm |
Find strongly connected components in a graph, typically implemented using depth-first search. |
Recursion |
Graph Bellman-Ford Algorithm |
Finding the shortest paths from a single source, can handle negative weight edges |
Iteration |
Graph Dijkstra's Algorithm |
Finding the shortest paths from a single source, cannot handle negative weight edges |
Iteration |
Graph Floyd-Warshall Algorithm |
Finding the shortest paths between all pairs of nodes |
Iteration |
Graph getCycles |
Find all cycles in a graph or detect the presence of cycles. |
Recursion |
Graph getCutVertexes |
Find cut vertices in a graph, which are nodes that, when removed, increase the number of connected components in
the graph.
|
Recursion |
Graph getSCCs |
Find strongly connected components in a graph, which are subgraphs where any two nodes can reach each other.
|
Recursion |
Graph getBridges |
Find bridges in a graph, which are edges that, when removed, increase the number of connected components in the
graph.
|
Recursion |
Graph topologicalSort |
Perform topological sorting on a directed acyclic graph (DAG) to find a linear order of nodes such that all
directed edges go from earlier nodes to later nodes.
|
Recursion |
## Software Engineering Design Standards
Principle |
Description |
Practicality |
Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names. |
Extensibility |
Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures. |
Modularization |
Includes data structure modularization and independent NPM packages. |
Efficiency |
All methods provide time and space complexity, comparable to native JS performance. |
Maintainability |
Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns. |
Testability |
Automated and customized unit testing, performance testing, and integration testing. |
Portability |
Plans for porting to Java, Python, and C++, currently achieved to 80%. |
Reusability |
Fully decoupled, minimized side effects, and adheres to OOP. |
Security |
Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects. |
Scalability |
Data structure software does not involve load issues. |