# Data Structure Typed ![npm](https://img.shields.io/npm/v/data-structure-typed) ![npm](https://img.shields.io/npm/dm/data-structure-typed) ![npm package minimized gzipped size (select exports)](https://img.shields.io/bundlejs/size/data-structure-typed) ![GitHub top language](https://img.shields.io/github/languages/top/zrwusa/data-structure-typed) ![eslint](https://aleen42.github.io/badges/src/eslint.svg) ![NPM](https://img.shields.io/npm/l/data-structure-typed) [//]: # (![npm bundle size](https://img.shields.io/bundlephobia/min/data-structure-typed)) Data Structures of Javascript & TypeScript. Do you envy C++ with [STL](), Python with [collections](), and Java with [java.util]() ? Well, no need to envy anymore! JavaScript and TypeScript now have [data-structure-typed](). Now you can use this library in Node.js and browser environments in CommonJS(require export.modules = ), ESModule(import export), Typescript(import export), UMD(var Queue = dataStructureTyped.Queue) [//]: # (![Branches](https://img.shields.io/badge/branches-55.47%25-red.svg?style=flat)) [//]: # (![Statements](https://img.shields.io/badge/statements-67%25-red.svg?style=flat)) [//]: # (![Functions](https://img.shields.io/badge/functions-66.38%25-red.svg?style=flat)) [//]: # (![Lines](https://img.shields.io/badge/lines-68.6%25-red.svg?style=flat)) ## Installation and Usage ### npm ```bash npm i data-structure-typed ``` ### yarn ```bash yarn add data-structure-typed ``` ```js import { BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList, AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap, DirectedVertex, AVLTreeNode } from 'data-structure-typed'; ``` ### CDN Copy the line below into the head tag in an HTML document. #### development ```html ``` #### production ```html ``` Copy the code below into the script tag of your HTML, and you're good to go with your development work. ```js const {Heap} = dataStructureTyped; const { BinaryTree, Graph, Queue, Stack, PriorityQueue, BST, Trie, DoublyLinkedList, AVLTree, MinHeap, SinglyLinkedList, DirectedGraph, TreeMultimap, DirectedVertex, AVLTreeNode } = dataStructureTyped; ``` ## Software Engineering Design Standards
Principle Description
Practicality Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.
Extensibility Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.
Modularization Includes data structure modularization and independent NPM packages.
Efficiency All methods provide time and space complexity, comparable to native JS performance.
Maintainability Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.
Testability Automated and customized unit testing, performance testing, and integration testing.
Portability Plans for porting to Java, Python, and C++, currently achieved to 80%.
Reusability Fully decoupled, minimized side effects, and adheres to OOP.
Security Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.
Scalability Data structure software does not involve load issues.
## Vivid Examples ### Binary Tree [Try it out](https://vivid-algorithm.vercel.app/), or you can execute your own code using our [visual tool](https://github.com/zrwusa/vivid-algorithm) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/binary-tree-array-to-binary-tree.webp) ### Binary Tree DFS [Try it out](https://vivid-algorithm.vercel.app/), or you can execute your own code using our [visual tool](https://github.com/zrwusa/vivid-algorithm) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/binary-tree-dfs-in-order.webp) ### AVL Tree [Try it out](https://vivid-algorithm.vercel.app/), or you can execute your own code using our [visual tool](https://github.com/zrwusa/vivid-algorithm) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/avl-tree-test.webp) ### Tree Multi Map [Try it out](https://vivid-algorithm.vercel.app/), or you can execute your own code using our [visual tool](https://github.com/zrwusa/vivid-algorithm) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/tree-multiset-test.webp) ### Matrix [Try it out](https://vivid-algorithm.vercel.app/algorithm/graph/), or you can execute your own code using our [visual tool](https://github.com/zrwusa/vivid-algorithm) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/matrix-cut-off-tree-for-golf.webp) ### Directed Graph [Try it out](https://vivid-algorithm.vercel.app/algorithm/graph/), or you can execute your own code using our [visual tool](https://github.com/zrwusa/vivid-algorithm) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/directed-graph-test.webp) ### Map Graph [Try it out](https://vivid-algorithm.vercel.app/algorithm/graph/), or you can execute your own code using our [visual tool](https://github.com/zrwusa/vivid-algorithm) ![](https://raw.githubusercontent.com/zrwusa/assets/master/images/data-structure-typed/examples/videos/webp_output/map-graph-test.webp) ## Code Snippets ### Binary Search Tree (BST) snippet #### TS ```ts import {BST, BSTNode} from 'data-structure-typed'; const bst = new BST(); bst.add(11); bst.add(3); bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]); bst.size === 16; // true bst.has(6); // true const node6 = bst.getNode(6); // BSTNode bst.getHeight(6) === 2; // true bst.getHeight() === 5; // true bst.getDepth(6) === 3; // true bst.getLeftMost()?.key === 1; // true bst.delete(6); bst.get(6); // undefined bst.isAVLBalanced(); // true bst.bfs()[0] === 11; // true const objBST = new BST<{height: number, age: number}>(); objBST.add(11, { "name": "Pablo", "age": 15 }); objBST.add(3, { "name": "Kirk", "age": 1 }); objBST.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5], [ { "name": "Alice", "age": 15 }, { "name": "Bob", "age": 1 }, { "name": "Charlie", "age": 8 }, { "name": "David", "age": 13 }, { "name": "Emma", "age": 16 }, { "name": "Frank", "age": 2 }, { "name": "Grace", "age": 6 }, { "name": "Hannah", "age": 9 }, { "name": "Isaac", "age": 12 }, { "name": "Jack", "age": 14 }, { "name": "Katie", "age": 4 }, { "name": "Liam", "age": 7 }, { "name": "Mia", "age": 10 }, { "name": "Noah", "age": 5 } ] ); objBST.delete(11); ``` #### JS ```js const {BST, BSTNode} = require('data-structure-typed'); const bst = new BST(); bst.add(11); bst.add(3); bst.addMany([15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]); bst.size === 16; // true bst.has(6); // true const node6 = bst.getNode(6); bst.getHeight(6) === 2; // true bst.getHeight() === 5; // true bst.getDepth(6) === 3; // true const leftMost = bst.getLeftMost(); leftMost?.key === 1; // true bst.delete(6); bst.get(6); // undefined bst.isAVLBalanced(); // true or false const bfsIDs = bst.bfs(); bfsIDs[0] === 11; // true ``` ### AVLTree snippet #### TS ```ts import {AVLTree} from 'data-structure-typed'; const avlTree = new AVLTree(); avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]) avlTree.isAVLBalanced(); // true avlTree.delete(10); avlTree.isAVLBalanced(); // true ``` #### JS ```js const {AVLTree} = require('data-structure-typed'); const avlTree = new AVLTree(); avlTree.addMany([11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5]) avlTree.isAVLBalanced(); // true avlTree.delete(10); avlTree.isAVLBalanced(); // true ``` ### Directed Graph simple snippet #### TS or JS ```ts import {DirectedGraph} from 'data-structure-typed'; const graph = new DirectedGraph(); graph.addVertex('A'); graph.addVertex('B'); graph.hasVertex('A'); // true graph.hasVertex('B'); // true graph.hasVertex('C'); // false graph.addEdge('A', 'B'); graph.hasEdge('A', 'B'); // true graph.hasEdge('B', 'A'); // false graph.deleteEdgeSrcToDest('A', 'B'); graph.hasEdge('A', 'B'); // false graph.addVertex('C'); graph.addEdge('A', 'B'); graph.addEdge('B', 'C'); const topologicalOrderKeys = graph.topologicalSort(); // ['A', 'B', 'C'] ``` ### Undirected Graph snippet #### TS or JS ```ts import {UndirectedGraph} from 'data-structure-typed'; const graph = new UndirectedGraph(); graph.addVertex('A'); graph.addVertex('B'); graph.addVertex('C'); graph.addVertex('D'); graph.deleteVertex('C'); graph.addEdge('A', 'B'); graph.addEdge('B', 'D'); const dijkstraResult = graph.dijkstra('A'); Array.from(dijkstraResult?.seen ?? []).map(vertex => vertex.key) // ['A', 'B', 'D'] ``` ## Built-in classic algorithms
Algorithm Function Description Iteration Type
Binary Tree DFS Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree, and then the right subtree, using recursion. Recursion + Iteration
Binary Tree BFS Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level from left to right. Iteration
Graph DFS Traverse a graph in a depth-first manner, starting from a given node, exploring along one path as deeply as possible, and backtracking to explore other paths. Used for finding connected components, paths, etc. Recursion + Iteration
Binary Tree Morris Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree traversal without additional stack or recursion. Iteration
Graph BFS Traverse a graph in a breadth-first manner, starting from a given node, first visiting nodes directly connected to the starting node, and then expanding level by level. Used for finding shortest paths, etc. Recursion + Iteration
Graph Tarjan's Algorithm Find strongly connected components in a graph, typically implemented using depth-first search. Recursion
Graph Bellman-Ford Algorithm Finding the shortest paths from a single source, can handle negative weight edges Iteration
Graph Dijkstra's Algorithm Finding the shortest paths from a single source, cannot handle negative weight edges Iteration
Graph Floyd-Warshall Algorithm Finding the shortest paths between all pairs of nodes Iteration
Graph getCycles Find all cycles in a graph or detect the presence of cycles. Recursion
Graph getCutVertexes Find cut vertices in a graph, which are nodes that, when removed, increase the number of connected components in the graph. Recursion
Graph getSCCs Find strongly connected components in a graph, which are subgraphs where any two nodes can reach each other. Recursion
Graph getBridges Find bridges in a graph, which are edges that, when removed, increase the number of connected components in the graph. Recursion
Graph topologicalSort Perform topological sorting on a directed acyclic graph (DAG) to find a linear order of nodes such that all directed edges go from earlier nodes to later nodes. Recursion
## API docs & Examples [API Docs](https://data-structure-typed-docs.vercel.app) [Live Examples](https://vivid-algorithm.vercel.app) Examples Repository ## Data Structures
Data Structure Unit Test Performance Test API Documentation Implemented
Binary Tree Binary Tree
Binary Search Tree (BST) BST
AVL Tree AVLTree
Red Black Tree RedBlackTree
Tree Multiset TreeMultimap
Segment Tree SegmentTree
Binary Indexed Tree BinaryIndexedTree
Graph AbstractGraph
Directed Graph DirectedGraph
Undirected Graph UndirectedGraph
Linked List SinglyLinkedList
Singly Linked List SinglyLinkedList
Doubly Linked List DoublyLinkedList
Queue Queue
Object Deque ObjectDeque
Array Deque ArrayDeque
Stack Stack
Coordinate Set CoordinateSet
Coordinate Map CoordinateMap
Heap Heap
Priority Queue PriorityQueue
Max Priority Queue MaxPriorityQueue
Min Priority Queue MinPriorityQueue
Trie Trie
## Standard library data structure comparison
Data Structure Typed C++ STL java.util Python collections
DoublyLinkedList<E> list<T> LinkedList<E> deque
SinglyLinkedList<E> - - -
Array<E> vector<T> ArrayList<E> list
Queue<E> queue<T> Queue<E> -
Deque<E> deque<T> - -
PriorityQueue<E> priority_queue<T> PriorityQueue<E> -
Heap<E> priority_queue<T> PriorityQueue<E> heapq
Stack<E> stack<T> Stack<E> -
Set<E> set<T> HashSet<E> set
Map<K, V> map<K, V> HashMap<K, V> dict
- unordered_set<T> HashSet<E> -
HashMap<K, V> unordered_map<K, V> HashMap<K, V> defaultdict
Map<K, V> - - OrderedDict
BinaryTree<K, V> - - -
BST<K, V> - - -
TreeMultimap<K, V> multimap<K, V> - -
AVLTree<E> - TreeSet<E> -
AVLTree<K, V> - TreeMap<K, V> -
AVLTree<E> set TreeSet<E> -
Trie - - -
- multiset<T> - -
DirectedGraph<V, E> - - -
UndirectedGraph<V, E> - - -
- unordered_multiset - Counter
- - LinkedHashSet<E> -
- - LinkedHashMap<K, V> -
- unordered_multimap<K, V> - -
- bitset<N> - -
## Benchmark [//]: # (No deletion!!! Start of Replace Section)
deque
test nametime taken (ms)executions per secsample deviation
1,000,000 push18.1755.040.00
1,000,000 push & pop26.0638.370.00
1,000,000 push & shift26.7937.320.00
1,000,000 unshift & shift25.1339.800.00
[//]: # (No deletion!!! End of Replace Section) ## Codebase design ### Adhere to ES6 and ESNext standard naming conventions for APIs. Standardize API conventions by using 'add' and 'delete' for element manipulation methods in all data structures. Opt for concise and clear method names, avoiding excessive length while ensuring explicit intent. ### Object-oriented programming(OOP) By strictly adhering to object-oriented design (BinaryTree -> BST -> AVLTree -> TreeMultimap), you can seamlessly inherit the existing data structures to implement the customized ones you need. Object-oriented design stands as the optimal approach to data structure design.