refactor: Extract all methods such as 'some', 'every', 'entries', 'keys', 'values', 'forEach', 'reduce' into the base classes 'IterableElementBase' and 'IterablePairBase'.

This commit is contained in:
Revone 2023-12-02 22:15:18 +08:00
parent 40abf9a8c2
commit 7f5eb6cb70
27 changed files with 1072 additions and 845 deletions

View file

@ -8,7 +8,7 @@ All notable changes to this project will be documented in this file.
- [Semantic Versioning](https://semver.org/spec/v2.0.0.html)
- [`auto-changelog`](https://github.com/CookPete/auto-changelog)
## [v1.48.0](https://github.com/zrwusa/data-structure-typed/compare/v1.35.0...main) (upcoming)
## [v1.48.1](https://github.com/zrwusa/data-structure-typed/compare/v1.35.0...main) (upcoming)
### Changes

View file

@ -0,0 +1 @@
export * from './iterable-base';

View file

@ -0,0 +1,329 @@
import { ElementCallback, PairCallback, ReduceElementCallback, ReducePairCallback } from "../../types";
export abstract class IterablePairBase<K = any, V = any> {
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The function is an implementation of the Symbol.iterator method that returns an iterable iterator.
* @param {any[]} args - The `args` parameter in the code snippet represents a rest parameter. It
* allows the function to accept any number of arguments as an array. In this case, the `args`
* parameter is used to pass any additional arguments to the `_getIterator` method.
*/
* [Symbol.iterator](...args: any[]): IterableIterator<[K, V]> {
yield* this._getIterator(...args);
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The function returns an iterator that yields key-value pairs from the object, where the value can
* be undefined.
*/
* entries(): IterableIterator<[K, V | undefined]> {
for (const item of this) {
yield item;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The function returns an iterator that yields the keys of a data structure.
*/
* keys(): IterableIterator<K> {
for (const item of this) {
yield item[0];
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The function returns an iterator that yields the values of a collection.
*/
* values(): IterableIterator<V> {
for (const item of this) {
yield item[1];
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `every` function checks if every element in a collection satisfies a given condition.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* `value`, `key`, and `index`. It should return a boolean value indicating whether the condition is
* met for the current element in the iteration.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the first argument to the `predicate` function. If `thisArg` is not provided
* @returns The `every` method is returning a boolean value. It returns `true` if every element in
* the collection satisfies the provided predicate function, and `false` otherwise.
*/
every(predicate: PairCallback<K, V, boolean>, thisArg?: any): boolean {
let index = 0;
for (const item of this) {
if (!predicate.call(thisArg, item[1], item[0], index++, this)) {
return false;
}
}
return true;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The "some" function iterates over a collection and returns true if at least one element satisfies
* a given predicate.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* `value`, `key`, and `index`. It should return a boolean value indicating whether the condition is
* met for the current element in the iteration.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as the `this` value when executing the `predicate` function. If `thisArg` is provided,
* it will be passed as the first argument to the `predicate` function. If `thisArg` is
* @returns a boolean value. It returns true if the predicate function returns true for any pair in
* the collection, and false otherwise.
*/
some(predicate: PairCallback<K, V, boolean>, thisArg?: any): boolean {
let index = 0;
for (const item of this) {
if (predicate.call(thisArg, item[1], item[0], index++, this)) {
return true;
}
}
return false;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `forEach` function iterates over each key-value pair in a collection and executes a callback
* function for each pair.
* @param callbackfn - The callback function that will be called for each element in the collection.
* It takes four parameters: the value of the current element, the key of the current element, the
* index of the current element, and the collection itself.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If `thisArg` is provided, it will be
* used as the `this` value when calling the callback function. If `thisArg` is not provided, `
*/
forEach(callbackfn: PairCallback<K, V, void>, thisArg?: any): void {
let index = 0;
for (const item of this) {
const [key, value] = item;
callbackfn.call(thisArg, value, key, index++, this)
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `reduce` function iterates over key-value pairs and applies a callback function to each pair,
* accumulating a single value.
* @param callbackfn - The callback function that will be called for each element in the collection.
* It takes four arguments: the current accumulator value, the current value of the element, the key
* of the element, and the index of the element in the collection. It should return the updated
* accumulator value.
* @param {U} initialValue - The `initialValue` parameter is the initial value of the accumulator. It
* is the value that will be used as the first argument to the `callbackfn` function when reducing
* the elements of the collection.
* @returns The `reduce` method is returning the final value of the accumulator after iterating over
* all the elements in the collection.
*/
reduce<U>(callbackfn: ReducePairCallback<K, V, U>, initialValue: U): U {
let accumulator = initialValue;
let index = 0;
for (const item of this) {
const [key, value] = item;
accumulator = callbackfn(accumulator, value, key, index++, this)
}
return accumulator;
}
protected abstract _getIterator(...args: any[]): IterableIterator<[K, V]>;
}
export abstract class IterableElementBase<V> {
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The function is an implementation of the Symbol.iterator method that returns an IterableIterator.
* @param {any[]} args - The `args` parameter in the code snippet represents a rest parameter. It
* allows the function to accept any number of arguments as an array. In this case, the `args`
* parameter is used to pass any number of arguments to the `_getIterator` method.
*/
* [Symbol.iterator](...args: any[]): IterableIterator<V> {
yield* this._getIterator(...args);
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The function returns an iterator that yields all the values in the object.
*/
* values(): IterableIterator<V> {
for (const item of this) {
yield item;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `every` function checks if every element in the array satisfies a given predicate.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being processed, its index, and the array it belongs to. It should return a
* boolean value indicating whether the element satisfies a certain condition or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `every` method is returning a boolean value. It returns `true` if every element in
* the array satisfies the provided predicate function, and `false` otherwise.
*/
every(predicate: ElementCallback<V, boolean>, thisArg?: any): boolean {
let index = 0;
for (const item of this) {
if (!predicate.call(thisArg, item as V, index++, this)) {
return false;
}
}
return true;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The "some" function checks if at least one element in a collection satisfies a given predicate.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* `value`, `index`, and `array`. It should return a boolean value indicating whether the current
* element satisfies the condition.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as the `this` value when executing the `predicate` function. If `thisArg` is provided,
* it will be passed as the `this` value to the `predicate` function. If `thisArg
* @returns a boolean value. It returns true if the predicate function returns true for any element
* in the collection, and false otherwise.
*/
some(predicate: ElementCallback<V, boolean>, thisArg?: any): boolean {
let index = 0;
for (const item of this) {
if (predicate.call(thisArg, item as V, index++, this)) {
return true;
}
}
return false;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in an array-like object and calls a callback
* function for each element.
* @param callbackfn - The callbackfn parameter is a function that will be called for each element in
* the array. It takes three arguments: the current element being processed, the index of the current
* element, and the array that forEach was called upon.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callbackfn` function. If `thisArg` is provided, it will
* be passed as the `this` value to the `callbackfn` function. If `thisArg
*/
forEach(callbackfn: ElementCallback<V, void>, thisArg?: any): void {
let index = 0;
for (const item of this) {
callbackfn.call(thisArg, item as V, index++, this)
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `reduce` function iterates over the elements of an array-like object and applies a callback
* function to reduce them into a single value.
* @param callbackfn - The callbackfn parameter is a function that will be called for each element in
* the array. It takes four arguments:
* @param {U} initialValue - The initialValue parameter is the initial value of the accumulator. It
* is the value that the accumulator starts with before the reduction operation begins.
* @returns The `reduce` method is returning the final value of the accumulator after iterating over
* all the elements in the array and applying the callback function to each element.
*/
reduce<U>(callbackfn: ReduceElementCallback<V, U>, initialValue: U): U {
let accumulator = initialValue;
let index = 0;
for (const item of this) {
accumulator = callbackfn(accumulator, item as V, index++, this)
}
return accumulator;
}
protected abstract _getIterator(...args: any[]): IterableIterator<V>;
}

View file

@ -13,7 +13,7 @@ import type {
BTNKey,
BTNodeEntry,
BTNodeExemplar,
BTNodeKeyOrNode
BTNodeKeyOrNode,
} from '../../types';
import {
BinaryTreeNested,
@ -22,11 +22,13 @@ import {
DFSOrderPattern,
FamilyPosition,
IterationType,
NodeDisplayLayout
NodeDisplayLayout,
PairCallback
} from '../../types';
import { IBinaryTree } from '../../interfaces';
import { trampoline } from '../../utils';
import { Queue } from '../queue';
import { IterablePairBase } from "../base";
/**
* Represents a node in a binary tree.
@ -103,7 +105,7 @@ export class BinaryTreeNode<V = any, N extends BinaryTreeNode<V, N> = BinaryTree
* 9. Complete Trees: All levels are fully filled except possibly the last, filled from left to right.
*/
export class BinaryTree<V = any, N extends BinaryTreeNode<V, N> = BinaryTreeNode<V, BinaryTreeNodeNested<V>>, TREE extends BinaryTree<V, N, TREE> = BinaryTree<V, N, BinaryTreeNested<V, N>>>
export class BinaryTree<V = any, N extends BinaryTreeNode<V, N> = BinaryTreeNode<V, BinaryTreeNodeNested<V>>, TREE extends BinaryTree<V, N, TREE> = BinaryTree<V, N, BinaryTreeNested<V, N>>> extends IterablePairBase<BTNKey, V | undefined>
implements IBinaryTree<V, N, TREE> {
iterationType = IterationType.ITERATIVE
@ -118,7 +120,7 @@ export class BinaryTree<V = any, N extends BinaryTreeNode<V, N> = BinaryTreeNode
* required.
*/
constructor(elements?: Iterable<BTNodeExemplar<V, N>>, options?: Partial<BinaryTreeOptions>) {
super();
if (options) {
const { iterationType } = options;
if (iterationType) {
@ -1724,47 +1726,6 @@ export class BinaryTree<V = any, N extends BinaryTreeNode<V, N> = BinaryTreeNode
return ans;
}
/**
* Time complexity: O(n)
* Space complexity: O(n)
*/
/**
* Time complexity: O(n)
* Space complexity: O(n)
*
* The function "keys" returns an array of keys from a given object.
* @returns an array of BTNKey objects.
*/
keys(): BTNKey[] {
const keys: BTNKey[] = [];
for (const entry of this) {
keys.push(entry[0]);
}
return keys;
}
/**
* Time complexity: O(n)
* Space complexity: O(n)
*/
/**
* Time complexity: O(n)
* Space complexity: O(n)
*
* The function "values" returns an array of values from a map-like object.
* @returns The `values()` method is returning an array of values (`V`) from the entries in the
* object.
*/
values(): (V | undefined)[] {
const values: (V | undefined)[] = [];
for (const entry of this) {
values.push(entry[1]);
}
return values;
}
/**
* Time complexity: O(n)
* Space complexity: O(n)
@ -1785,34 +1746,30 @@ export class BinaryTree<V = any, N extends BinaryTreeNode<V, N> = BinaryTreeNode
}
/**
* Time complexity: O(n)
* Space complexity: O(1)
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* The `forEach` function iterates over each entry in a tree and calls a callback function with the
* entry and the tree as arguments.
* @param callback - The callback parameter is a function that will be called for each entry in the
* tree. It takes two parameters: entry and tree.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new tree by iterating over the elements of the current tree and
* adding only the elements that satisfy the given predicate function.
* @param predicate - The `predicate` parameter is a function that takes three arguments: `value`,
* `key`, and `index`. It should return a boolean value indicating whether the pair should be
* included in the filtered tree or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as the `this` value when executing the `predicate` function. If `thisArg` is provided,
* it will be passed as the first argument to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new tree object that contains the key-value pairs that
* pass the given predicate function.
*/
forEach(callback: (entry: [BTNKey, V | undefined], tree: this) => void): void {
for (const entry of this) {
callback(entry, this);
}
}
/**
* The `filter` function creates a new tree by iterating over the entries of the current tree and
* adding the entries that satisfy the given predicate.
* @param predicate - The `predicate` parameter is a function that takes two arguments: `entry` and
* `tree`.
* @returns The `filter` method is returning a new tree object that contains only the entries that
* satisfy the given predicate function.
*/
filter(predicate: (entry: [BTNKey, V | undefined], tree: this) => boolean) {
filter(predicate: PairCallback<BTNKey, V | undefined, boolean>, thisArg?: any) {
const newTree = this.createTree();
let index = 0;
for (const [key, value] of this) {
if (predicate([key, value], this)) {
if (predicate.call(thisArg, value, key, index++, this)) {
newTree.add([key, value]);
}
}
@ -1820,87 +1777,43 @@ export class BinaryTree<V = any, N extends BinaryTreeNode<V, N> = BinaryTreeNode
}
/**
* The `map` function creates a new tree by applying a callback function to each entry in the current
* tree.
* @param callback - The callback parameter is a function that takes two arguments: entry and tree.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new tree by applying a callback function to each key-value pair in
* the original tree.
* @param callback - The callback parameter is a function that will be called for each key-value pair
* in the tree. It takes four arguments: the value of the current pair, the key of the current pair,
* the index of the current pair, and a reference to the tree itself. The callback function should
* return a new
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If you pass a value for `thisArg`, it
* will be used as the `this` value when the callback function is called. If you don't pass a value
* @returns The `map` method is returning a new tree object.
*/
map(callback: (entry: [BTNKey, V | undefined], tree: this) => V) {
map(callback: PairCallback<BTNKey, V | undefined, V>, thisArg?: any) {
const newTree = this.createTree();
let index = 0;
for (const [key, value] of this) {
newTree.add([key, callback([key, value], this)]);
newTree.add([key, callback.call(thisArg, value, key, index++, this)]);
}
return newTree;
}
// TODO Type error, need to return a TREE<NV> that is a value type only for callback function.
// map<NV>(callback: (entry: [BTNKey, V | undefined], tree: this) => NV) {
// const newTree = this.createTree();
// for (const [key, value] of this) {
// newTree.add(key, callback([key, value], this));
// }
// return newTree;
// }
/**
* The `reduce` function iterates over the entries of a tree and applies a callback function to each
* entry, accumulating a single value.
* @param callback - The callback parameter is a function that takes three arguments: accumulator,
* entry, and tree. It is called for each entry in the tree and is used to accumulate a single value
* based on the logic defined in the callback function.
* @param {T} initialValue - The initialValue parameter is the initial value of the accumulator. It
* is the value that will be passed as the first argument to the callback function when reducing the
* elements of the tree.
* @returns The `reduce` method is returning the final value of the accumulator after iterating over
* all the entries in the tree and applying the callback function to each entry.
*/
reduce<T>(callback: (accumulator: T, entry: [BTNKey, V | undefined], tree: this) => T, initialValue: T): T {
let accumulator = initialValue;
for (const [key, value] of this) {
accumulator = callback(accumulator, [key, value], this);
}
return accumulator;
}
/**
* The above function is an iterator for a binary tree that can be used to traverse the tree in
* either an iterative or recursive manner.
* @param node - The `node` parameter represents the current node in the binary tree from which the
* iteration starts. It is an optional parameter with a default value of `this.root`, which means
* that if no node is provided, the iteration will start from the root of the binary tree.
* @returns The `*[Symbol.iterator]` method returns a generator object that yields the keys of the
* binary tree nodes in a specific order.
*/
* [Symbol.iterator](node = this.root): Generator<[BTNKey, V | undefined], void, undefined> {
if (!node) return;
if (this.iterationType === IterationType.ITERATIVE) {
const stack: (N | null | undefined)[] = [];
let current: N | null | undefined = node;
while (current || stack.length > 0) {
while (current && !isNaN(current.key)) {
stack.push(current);
current = current.left;
}
current = stack.pop();
if (current && !isNaN(current.key)) {
yield [current.key, current.value];
current = current.right;
}
}
} else {
if (node.left && !isNaN(node.key)) {
yield* this[Symbol.iterator](node.left);
}
yield [node.key, node.value];
if (node.right && !isNaN(node.key)) {
yield* this[Symbol.iterator](node.right);
}
}
}
// // TODO Type error, need to return a TREE<NV> that is a value type only for callback function.
// // map<NV>(callback: (entry: [BTNKey, V | undefined], tree: this) => NV) {
// // const newTree = this.createTree();
// // for (const [key, value] of this) {
// // newTree.add(key, callback([key, value], this));
// // }
// // return newTree;
// // }
//
/**
* The `print` function is used to display a binary tree structure in a visually appealing way.
@ -1931,6 +1844,37 @@ export class BinaryTree<V = any, N extends BinaryTreeNode<V, N> = BinaryTreeNode
display(beginRoot);
}
protected* _getIterator(node = this.root): IterableIterator<[BTNKey, V | undefined]> {
if (!node) return;
if (this.iterationType === IterationType.ITERATIVE) {
const stack: (N | null | undefined)[] = [];
let current: N | null | undefined = node;
while (current || stack.length > 0) {
while (current && !isNaN(current.key)) {
stack.push(current);
current = current.left;
}
current = stack.pop();
if (current && !isNaN(current.key)) {
yield [current.key, current.value];
current = current.right;
}
}
} else {
if (node.left && !isNaN(node.key)) {
yield* this[Symbol.iterator](node.left);
}
yield [node.key, node.value];
if (node.right && !isNaN(node.key)) {
yield* this[Symbol.iterator](node.right);
}
}
}
protected _displayAux(node: N | null | undefined, options: BinaryTreePrintOptions): NodeDisplayLayout {
const { isShowNull, isShowUndefined, isShowRedBlackNIL } = options;
const emptyDisplayLayout = <NodeDisplayLayout>[['─'], 1, 0, 0];

View file

@ -8,8 +8,10 @@
import { uuidV4 } from '../../utils';
import { PriorityQueue } from '../priority-queue';
import type { DijkstraResult, VertexKey } from '../../types';
import { PairCallback } from "../../types";
import { IGraph } from '../../interfaces';
import { Queue } from '../queue';
import { IterablePairBase } from "../base";
export abstract class AbstractVertex<V = any> {
key: VertexKey;
@ -64,7 +66,11 @@ export abstract class AbstractGraph<
E = any,
VO extends AbstractVertex<V> = AbstractVertex<V>,
EO extends AbstractEdge<E> = AbstractEdge<E>
> implements IGraph<V, E, VO, EO> {
> extends IterablePairBase<VertexKey, V | undefined> implements IGraph<V, E, VO, EO> {
constructor() {
super();
}
protected _vertices: Map<VertexKey, VO> = new Map<VertexKey, VO>();
get vertices(): Map<VertexKey, VO> {
@ -1159,50 +1165,71 @@ export abstract class AbstractGraph<
return this.tarjan(false, true, false, false).bridges;
}
* [Symbol.iterator](): Iterator<[VertexKey, V | undefined]> {
for (const vertex of this._vertices.values()) {
yield [vertex.key, vertex.value];
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
forEach(callback: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => void): void {
let index = 0;
for (const vertex of this) {
callback(vertex, index, this._vertices);
index++;
}
}
filter(predicate: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => boolean): [VertexKey, V | undefined][] {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates over key-value pairs in a data structure and returns an array of
* pairs that satisfy a given predicate.
* @param predicate - The `predicate` parameter is a callback function that takes four arguments:
* `value`, `key`, `index`, and `this`. It is used to determine whether an element should be included
* in the filtered array. The callback function should return `true` if the element should be
* included, and `
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is provided, it will be
* @returns The `filter` method returns an array of key-value pairs `[VertexKey, V | undefined][]`
* that satisfy the given predicate function.
*/
filter(predicate: PairCallback<VertexKey, V | undefined, boolean>, thisArg?: any): [VertexKey, V | undefined][] {
const filtered: [VertexKey, V | undefined][] = [];
let index = 0;
for (const entry of this) {
if (predicate(entry, index, this._vertices)) {
filtered.push(entry);
for (const [key, value] of this) {
if (predicate.call(thisArg, value, key, index, this)) {
filtered.push([key, value]);
}
index++;
}
return filtered;
}
map<T>(callback: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => T): T[] {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function iterates over the elements of a collection and applies a callback function to
* each element, returning an array of the results.
* @param callback - The callback parameter is a function that will be called for each element in the
* map. It takes four arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If `thisArg` is provided, it will be
* used as the `this` value when calling the callback function. If `thisArg` is not provided, `
* @returns The `map` function is returning an array of type `T[]`.
*/
map<T>(callback: PairCallback<VertexKey, V | undefined, T>, thisArg?: any): T[] {
const mapped: T[] = [];
let index = 0;
for (const entry of this) {
mapped.push(callback(entry, index, this._vertices));
for (const [key, value] of this) {
mapped.push(callback.call(thisArg, value, key, index, this));
index++;
}
return mapped;
}
reduce<T>(callback: (accumulator: T, entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => T, initialValue: T): T {
let accumulator: T = initialValue;
let index = 0;
for (const entry of this) {
accumulator = callback(accumulator, entry, index, this._vertices);
index++;
protected* _getIterator(): IterableIterator<[VertexKey, V | undefined]> {
for (const vertex of this._vertices.values()) {
yield [vertex.key, vertex.value];
}
return accumulator;
}
protected abstract _addEdgeOnly(edge: EO): boolean;

View file

@ -7,9 +7,10 @@
*/
import { isWeakKey, rangeCheck } from '../../utils';
import { HashMapLinkedNode, HashMapOptions, HashMapStoreItem } from '../../types';
import { HashMapLinkedNode, HashMapOptions, HashMapStoreItem, PairCallback } from '../../types';
import { IterablePairBase } from "../base";
export class HashMap<K = any, V = any> {
export class HashMap<K = any, V = any> extends IterablePairBase<K, V> {
protected _store: { [key: string]: HashMapStoreItem<K, V> } = {};
protected _objMap: Map<object, V> = new Map();
@ -24,6 +25,7 @@ export class HashMap<K = any, V = any> {
constructor(elements: Iterable<[K, V]> = [], options?: {
hashFn: (key: K) => string
}) {
super();
if (options) {
const { hashFn } = options;
if (hashFn) {
@ -145,102 +147,14 @@ export class HashMap<K = any, V = any> {
}
/**
* The function returns an iterator that yields key-value pairs from both an object store and an
* object map.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
* [Symbol.iterator](): IterableIterator<[K, V]> {
for (const node of Object.values(this._store)) {
yield [node.key, node.value] as [K, V];
}
for (const node of this._objMap) {
yield node as [K, V];
}
}
/**
* The function returns an iterator that yields key-value pairs from the object.
*/
* entries(): IterableIterator<[K, V]> {
for (const item of this) {
yield item;
}
}
/**
* The function `keys()` returns an iterator that yields all the keys of the object.
*/
* keys(): IterableIterator<K> {
for (const [key] of this) {
yield key;
}
}
* values(): IterableIterator<V> {
for (const [, value] of this) {
yield value;
}
}
/**
* The `every` function checks if every element in a HashMap satisfies a given predicate function.
* @param predicate - The predicate parameter is a function that takes four arguments: value, key,
* index, and map. It is used to test each element in the map against a condition. If the predicate
* function returns false for any element, the every() method will return false. If the predicate
* function returns true for all
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The method is returning a boolean value. It returns true if the predicate function
* returns true for every element in the map, and false otherwise.
*/
every(predicate: (value: V, key: K, index: number, map: HashMap<K, V>) => boolean, thisArg?: any): boolean {
let index = 0;
for (const [key, value] of this) {
if (!predicate.call(thisArg, value, key, index++, this)) {
return false;
}
}
return true;
}
/**
* The "some" function checks if at least one element in a HashMap satisfies a given predicate.
* @param predicate - The `predicate` parameter is a function that takes four arguments: `value`,
* `key`, `index`, and `map`. It is used to determine whether a specific condition is met for a given
* key-value pair in the `HashMap`.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns a boolean value. It returns true if the predicate function returns true for any element
* in the map, and false otherwise.
*/
some(predicate: (value: V, key: K, index: number, map: HashMap<K, V>) => boolean, thisArg?: any): boolean {
let index = 0;
for (const [key, value] of this) {
if (predicate.call(thisArg, value, key, index++, this)) {
return true;
}
}
return false;
}
/**
* The `forEach` function iterates over the elements of a HashMap and applies a callback function to
* each element.
* @param callbackfn - A function that will be called for each key-value pair in the HashMap. It
* takes four parameters:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callbackfn` function. If `thisArg` is provided, it will
* be passed as the `this` value inside the `callbackfn` function. If `thisArg
*/
forEach(callbackfn: (value: V, key: K, index: number, map: HashMap<K, V>) => void, thisArg?: any): void {
let index = 0;
for (const [key, value] of this) {
callbackfn.call(thisArg, value, key, index++, this);
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function in TypeScript creates a new HashMap by applying a callback function to each
* key-value pair in the original HashMap.
* @param callbackfn - The callback function that will be called for each key-value pair in the
@ -251,7 +165,7 @@ export class HashMap<K = any, V = any> {
* @returns The `map` method is returning a new `HashMap` object with the transformed values based on
* the provided callback function.
*/
map<U>(callbackfn: (value: V, key: K, index: number, map: HashMap<K, V>) => U, thisArg?: any): HashMap<K, U> {
map<U>(callbackfn: PairCallback<K, V, U>, thisArg?: any): HashMap<K, U> {
const resultMap = new HashMap<K, U>();
let index = 0;
for (const [key, value] of this) {
@ -261,6 +175,14 @@ export class HashMap<K = any, V = any> {
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new HashMap containing key-value pairs from the original HashMap
* that satisfy a given predicate function.
* @param predicate - The predicate parameter is a function that takes four arguments: value, key,
@ -273,7 +195,7 @@ export class HashMap<K = any, V = any> {
* @returns The `filter` method is returning a new `HashMap` object that contains the key-value pairs
* from the original `HashMap` that pass the provided `predicate` function.
*/
filter(predicate: (value: V, key: K, index: number, map: HashMap<K, V>) => boolean, thisArg?: any): HashMap<K, V> {
filter(predicate: PairCallback<K, V, boolean>, thisArg?: any): HashMap<K, V> {
const filteredMap = new HashMap<K, V>();
let index = 0;
for (const [key, value] of this) {
@ -284,28 +206,21 @@ export class HashMap<K = any, V = any> {
return filteredMap;
}
/**
* The `reduce` function iterates over the elements of a HashMap and applies a callback function to
* each element, accumulating a single value.
* @param callbackfn - The callback function that will be called for each element in the HashMap. It
* takes five parameters:
* @param {U} initialValue - The initialValue parameter is the initial value of the accumulator. It
* is the value that will be used as the first argument of the callback function when reducing the
* elements of the map.
* @returns The `reduce` method is returning the final value of the accumulator after iterating over
* all the elements in the `HashMap`.
*/
reduce<U>(callbackfn: (accumulator: U, currentValue: V, currentKey: K, index: number, map: HashMap<K, V>) => U, initialValue: U): U {
let accumulator = initialValue;
let index = 0;
for (const [key, value] of this) {
accumulator = callbackfn(accumulator, value, key, index++, this);
}
return accumulator;
print(): void {
console.log([...this.entries()]);
}
print(): void{
console.log([...this.entries()]);
/**
* The function returns an iterator that yields key-value pairs from both an object store and an
* object map.
*/
protected* _getIterator(): IterableIterator<[K, V]> {
for (const node of Object.values(this._store)) {
yield [node.key, node.value] as [K, V];
}
for (const node of this._objMap) {
yield node as [K, V];
}
}
protected _hashFn: (key: K) => string = (key: K) => String(key);
@ -333,7 +248,7 @@ export class HashMap<K = any, V = any> {
}
}
export class LinkedHashMap<K = any, V = any> {
export class LinkedHashMap<K = any, V = any> extends IterablePairBase<K, V> {
protected _noObjMap: Record<string, HashMapLinkedNode<K, V | undefined>> = {};
protected _objMap = new WeakMap<object, HashMapLinkedNode<K, V | undefined>>();
@ -349,6 +264,7 @@ export class LinkedHashMap<K = any, V = any> {
hashFn: (key: K) => String(key),
objHashFn: (key: K) => (<object>key)
}) {
super();
this._sentinel = <HashMapLinkedNode<K, V>>{};
this._sentinel.prev = this._sentinel.next = this._head = this._tail = this._sentinel;
@ -492,18 +408,6 @@ export class LinkedHashMap<K = any, V = any> {
}
}
keys(): K[] {
const keys: K[] = [];
for (const [key] of this) keys.push(key);
return keys;
}
values(): V[] {
const values: V[] = [];
for (const [, value] of this) values.push(value);
return values;
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)
@ -644,36 +548,30 @@ export class LinkedHashMap<K = any, V = any> {
}
/**
* Time Complexity: O(n), where n is the number of elements in the LinkedHashMap.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a LinkedHashMap and executes a callback function on
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* LinkedHashMap. It takes three arguments:
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
forEach(callback: (element: [K, V], index: number, hashMap: LinkedHashMap<K, V>) => void) {
let index = 0;
let node = this._head;
while (node !== this._sentinel) {
callback(<[K, V]>[node.key, node.value], index++, this);
node = node.next;
}
}
/**
* The `filter` function takes a predicate function and returns a new LinkedHashMap containing only the
* key-value pairs that satisfy the predicate.
* @param predicate - The `predicate` parameter is a function that takes two arguments: `element` and
* `map`.
* @returns a new LinkedHashMap object that contains the key-value pairs from the original LinkedHashMap that
* satisfy the given predicate function.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new `LinkedHashMap` containing key-value pairs from the original
* map that satisfy a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes four arguments:
* `value`, `key`, `index`, and `this`. It should return a boolean value indicating whether the
* current element should be included in the filtered map or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is not provided, `this
* @returns a new `LinkedHashMap` object that contains the key-value pairs from the original
* `LinkedHashMap` object that satisfy the given predicate function.
*/
filter(predicate: (element: [K, V], index: number, map: LinkedHashMap<K, V>) => boolean): LinkedHashMap<K, V> {
filter(predicate: PairCallback<K, V, boolean>, thisArg?: any): LinkedHashMap<K, V> {
const filteredMap = new LinkedHashMap<K, V>();
let index = 0;
for (const [key, value] of this) {
if (predicate([key, value], index, this)) {
if (predicate.call(thisArg, value, key, index, this)) {
filteredMap.set(key, value);
}
index++;
@ -682,43 +580,40 @@ export class LinkedHashMap<K = any, V = any> {
}
/**
* The `map` function takes a callback function and returns a new LinkedHashMap with the values transformed
* by the callback.
* @param callback - The `callback` parameter is a function that takes two arguments: `element` and
* `map`.
* @returns a new LinkedHashMap object with the values mapped according to the provided callback function.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
map<NV>(callback: (element: [K, V], index: number, map: LinkedHashMap<K, V>) => NV): LinkedHashMap<K, NV> {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function in TypeScript creates a new `LinkedHashMap` by applying a callback function to
* each key-value pair in the original map.
* @param callback - The callback parameter is a function that will be called for each key-value pair
* in the map. It takes four arguments: the value of the current key-value pair, the key of the
* current key-value pair, the index of the current key-value pair, and the map itself. The callback
* function should
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If provided, the callback function will
* be called with `thisArg` as its `this` value. If not provided, `this` will refer to the current
* map
* @returns a new `LinkedHashMap` object with the values mapped according to the provided callback
* function.
*/
map<NV>(callback: PairCallback<K, V, NV>, thisArg?: any): LinkedHashMap<K, NV> {
const mappedMap = new LinkedHashMap<K, NV>();
let index = 0;
for (const [key, value] of this) {
const newValue = callback([key, value], index, this);
const newValue = callback.call(thisArg, value, key, index, this);
mappedMap.set(key, newValue);
index++;
}
return mappedMap;
}
/**
* The `reduce` function iterates over the elements of a LinkedHashMap and applies a callback function to
* each element, accumulating a single value.
* @param callback - The callback parameter is a function that takes three arguments: accumulator,
* element, and map. It is called for each element in the LinkedHashMap and is used to accumulate a single
* result.
* @param {A} initialValue - The `initialValue` parameter is the initial value of the accumulator. It
* is the value that will be passed as the first argument to the `callback` function when reducing
* the elements of the map.
* @returns The `reduce` function is returning the final value of the accumulator after iterating
* over all the elements in the LinkedHashMap and applying the callback function to each element.
*/
reduce<A>(callback: (accumulator: A, element: [K, V], index: number, map: LinkedHashMap<K, V>) => A, initialValue: A): A {
let accumulator = initialValue;
let index = 0;
for (const entry of this) {
accumulator = callback(accumulator, entry, index, this);
index++;
}
return accumulator;
print() {
console.log([...this]);
}
/**
@ -727,7 +622,7 @@ export class LinkedHashMap<K = any, V = any> {
*
* The above function is an iterator that yields key-value pairs from a linked list.
*/
* [Symbol.iterator]() {
protected* _getIterator() {
let node = this._head;
while (node !== this._sentinel) {
yield <[K, V]>[node.key, node.value];
@ -735,10 +630,6 @@ export class LinkedHashMap<K = any, V = any> {
}
}
print() {
console.log([...this]);
}
/**
* Time Complexity: O(1)
* Space Complexity: O(1)

View file

@ -5,13 +5,15 @@
* @license MIT License
*/
import type { Comparator, DFSOrderPattern } from '../../types';
import type { Comparator, DFSOrderPattern, ElementCallback } from '../../types';
import { HeapOptions } from "../../types";
import { IterableElementBase } from "../base";
export class Heap<E = any> {
export class Heap<E = any> extends IterableElementBase<E> {
options: HeapOptions<E>;
constructor(elements?: Iterable<E>, options?: HeapOptions<E>) {
super();
const defaultComparator = (a: E, b: E) => {
if (!(typeof a === 'number' && typeof b === 'number')) {
throw new Error('The a, b params of compare function must be number');
@ -339,56 +341,75 @@ export class Heap<E = any> {
for (let i = Math.floor(this.size / 2); i >= 0; i--) this._sinkDown(i, this.elements.length >> 1);
}
* [Symbol.iterator]() {
for (const element of this.elements) {
yield element;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
forEach(callback: (element: E, index: number, heap: this) => void): void {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new Heap object containing elements that pass a given callback
* function.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the heap. It takes three arguments: the current element, the index of the current element, and the
* heap itself. The callback function should return a boolean value indicating whether the current
* element should be included in the filtered list
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `Heap` object that contains the elements that pass
* the filter condition specified by the `callback` function.
*/
filter(callback: ElementCallback<E, boolean>, thisArg?: any): Heap<E> {
const filteredList = new Heap<E>();
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
filter(predicate: (element: E, index: number, heap: Heap<E>) => boolean): Heap<E> {
const filteredHeap: Heap<E> = new Heap<E>([], this.options);
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
filteredHeap.push(el);
for (const current of this) {
if (callback.call(thisArg, current, index, this)) {
filteredList.push(current);
}
index++;
}
return filteredHeap;
return filteredList;
}
map<T>(callback: (element: E, index: number, heap: Heap<E>) => T, comparator: Comparator<T>): Heap<T> {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new heap by applying a callback function to each element of the
* original heap.
* @param callback - The callback parameter is a function that will be called for each element in the
* original heap. It takes three arguments: the current element, the index of the current element,
* and the original heap itself. The callback function should return a value of type T, which will be
* added to the mapped heap.
* @param comparator - The `comparator` parameter is a function that is used to compare elements in
* the heap. It takes two arguments, `a` and `b`, and returns a negative number if `a` is less than
* `b`, a positive number if `a` is greater than `b`, or
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. It is used when you want to bind a
* specific object as the context for the callback function. If `thisArg` is not provided,
* `undefined` is used as
* @returns a new instance of the Heap class, which is created using the mapped elements from the
* original Heap.
*/
map<T>(callback: ElementCallback<E, T>, comparator: Comparator<T>, thisArg?: any): Heap<T> {
const mappedHeap: Heap<T> = new Heap<T>([], { comparator: comparator });
let index = 0;
for (const el of this) {
mappedHeap.add(callback(el, index, this));
mappedHeap.add(callback.call(thisArg, el, index, this));
index++;
}
return mappedHeap;
}
reduce<T>(
callback: (accumulator: T, currentValue: E, currentIndex: number, heap: Heap<E>) => T,
initialValue: T
): T {
let accumulator: T = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
}
return accumulator;
}
/**
* Time Complexity: O(log n)
* Space Complexity: O(1)
@ -398,6 +419,12 @@ export class Heap<E = any> {
console.log([...this]);
}
protected* _getIterator() {
for (const element of this.elements) {
yield element;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)

View file

@ -9,3 +9,4 @@ export * from './heap';
export * from './priority-queue';
export * from './matrix';
export * from './trie';
export * from './base';

View file

@ -1,3 +1,6 @@
import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**
* data-structure-typed
*
@ -22,11 +25,12 @@ export class DoublyLinkedListNode<E = any> {
}
}
export class DoublyLinkedList<E = any> {
export class DoublyLinkedList<E = any> extends IterableElementBase<E> {
/**
* The constructor initializes the linked list with an empty head, tail, and length.
*/
constructor(elements?: Iterable<E>) {
super();
this._head = undefined;
this._tail = undefined;
this._length = 0;
@ -724,59 +728,32 @@ export class DoublyLinkedList<E = any> {
}
/**
* The function returns an iterator that iterates over the values of a linked list.
*/
* [Symbol.iterator]() {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a linked list and applies a callback function to each element.
* @param callback - The callback parameter is a function that takes two arguments: value and index. The value argument
* represents the value of the current node in the linked list, and the index argument represents the index of the
* current node in the linked list.
*/
forEach(callback: (value: E, index: number, list: DoublyLinkedList<E>) => void): void {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates through a DoublyLinkedList and returns a new DoublyLinkedList containing only the
* elements that satisfy the given callback function.
* @param callback - The `callback` parameter is a function that takes a value of type `E` and returns a boolean value.
* It is used to determine whether a value should be included in the filtered list or not.
* @returns The filtered list, which is an instance of the DoublyLinkedList class.
* The `filter` function creates a new DoublyLinkedList by iterating over the elements of the current
* list and applying a callback function to each element, returning only the elements for which the
* callback function returns true.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the DoublyLinkedList. It takes three arguments: the current element, the index of the current
* element, and the DoublyLinkedList itself. The callback function should return a boolean value
* indicating whether the current element should be included
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `DoublyLinkedList` object that contains the
* elements that pass the filter condition specified by the `callback` function.
*/
filter(callback: (value: E, index: number, list: DoublyLinkedList<E>) => boolean): DoublyLinkedList<E> {
filter(callback: ElementCallback<E, boolean>, thisArg?: any): DoublyLinkedList<E> {
const filteredList = new DoublyLinkedList<E>();
let index = 0;
for (const current of this) {
if (callback(current, index, this)) {
if (callback.call(thisArg, current, index, this)) {
filteredList.push(current);
}
index++;
@ -790,21 +767,27 @@ export class DoublyLinkedList<E = any> {
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the DoublyLinkedList, returning a new
* DoublyLinkedList with the transformed values.
* @param callback - The callback parameter is a function that takes a value of type E (the type of values stored in
* the original DoublyLinkedList) and returns a value of type T (the type of values that will be stored in the mapped
* DoublyLinkedList).
* @returns The `map` function is returning a new instance of `DoublyLinkedList<T>` that contains the mapped values.
* The `map` function creates a new DoublyLinkedList by applying a callback function to each element
* in the original list.
* @param callback - The callback parameter is a function that will be called for each element in the
* DoublyLinkedList. It takes three arguments: the current element, the index of the current element,
* and the DoublyLinkedList itself. The callback function should return a value that will be added to
* the new DoublyLinkedList that
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `DoublyLinkedList` object that contains the results
* of applying the provided `callback` function to each element in the original `DoublyLinkedList`
* object.
*/
map<T>(callback: (value: E, index: number, list: DoublyLinkedList<E>) => T): DoublyLinkedList<T> {
map<T>(callback: ElementCallback<E, T>, thisArg?: any): DoublyLinkedList<T> {
const mappedList = new DoublyLinkedList<T>();
let index = 0;
for (const current of this) {
mappedList.push(callback(current, index, this));
mappedList.push(callback.call(thisArg, current, index, this));
index++;
}
@ -816,31 +799,19 @@ export class DoublyLinkedList<E = any> {
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(n)
*
* The `reduce` function iterates over a linked list and applies a callback function to each element, accumulating a
* single value.
* @param callback - The `callback` parameter is a function that takes two arguments: `accumulator` and `value`. It is
* used to perform a specific operation on each element of the linked list.
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It is the starting
* point for the reduction operation.
* @returns The `reduce` method is returning the final value of the accumulator after iterating through all the
* elements in the linked list.
*/
reduce<T>(callback: (accumulator: T, value: E, index: number, list: DoublyLinkedList<E>) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const current of this) {
accumulator = callback(accumulator, current, index, this);
index++;
}
return accumulator;
}
print(): void {
console.log([...this]);
}
/**
* The function returns an iterator that iterates over the values of a linked list.
*/
protected* _getIterator(): IterableIterator<E> {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
}
}

View file

@ -1,3 +1,6 @@
import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**
* data-structure-typed
*
@ -20,11 +23,12 @@ export class SinglyLinkedListNode<E = any> {
}
}
export class SinglyLinkedList<E = any> {
export class SinglyLinkedList<E = any> extends IterableElementBase<E> {
/**
* The constructor initializes the linked list with an empty head, tail, and length.
*/
constructor(elements?: Iterable<E>) {
super();
this._head = undefined;
this._tail = undefined;
this._length = 0;
@ -670,59 +674,32 @@ export class SinglyLinkedList<E = any> {
}
/**
* The function returns an iterator that iterates over the values of a linked list.
*/
* [Symbol.iterator]() {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a linked list and applies a callback function to each element.
* @param callback - The callback parameter is a function that takes two arguments: value and index. The value argument
* represents the value of the current node in the linked list, and the index argument represents the index of the
* current node in the linked list.
*/
forEach(callback: (value: E, index: number, list: SinglyLinkedList<E>) => void): void {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates through a SinglyLinkedList and returns a new SinglyLinkedList containing only the
* elements that satisfy the given callback function.
* @param callback - The `callback` parameter is a function that takes a value of type `E` and returns a boolean value.
* It is used to determine whether a value should be included in the filtered list or not.
* @returns The filtered list, which is an instance of the SinglyLinkedList class.
* The `filter` function creates a new SinglyLinkedList by iterating over the elements of the current
* list and applying a callback function to each element to determine if it should be included in the
* filtered list.
* @param callback - The callback parameter is a function that will be called for each element in the
* list. It takes three arguments: the current element, the index of the current element, and the
* list itself. The callback function should return a boolean value indicating whether the current
* element should be included in the filtered list or not
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `SinglyLinkedList` object that contains the
* elements that pass the filter condition specified by the `callback` function.
*/
filter(callback: (value: E, index: number, list: SinglyLinkedList<E>) => boolean): SinglyLinkedList<E> {
filter(callback: ElementCallback<E, boolean>, thisArg?: any): SinglyLinkedList<E> {
const filteredList = new SinglyLinkedList<E>();
let index = 0;
for (const current of this) {
if (callback(current, index, this)) {
if (callback.call(thisArg, current, index, this)) {
filteredList.push(current);
}
index++;
@ -730,27 +707,30 @@ export class SinglyLinkedList<E = any> {
return filteredList;
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the SinglyLinkedList, returning a new
* SinglyLinkedList with the transformed values.
* @param callback - The callback parameter is a function that takes a value of type E (the type of values stored in
* the original SinglyLinkedList) and returns a value of type T (the type of values that will be stored in the mapped
* SinglyLinkedList).
* @returns The `map` function is returning a new instance of `SinglyLinkedList<T>` that contains the mapped values.
*/
map<T>(callback: (value: E, index: number, list: SinglyLinkedList<E>) => T): SinglyLinkedList<T> {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new SinglyLinkedList by applying a callback function to each element
* of the original list.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the linked list. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `SinglyLinkedList` object that contains the results
* of applying the provided `callback` function to each element in the original list.
*/
map<T>(callback: ElementCallback<E, T>, thisArg?: any): SinglyLinkedList<T> {
const mappedList = new SinglyLinkedList<T>();
let index = 0;
for (const current of this) {
mappedList.push(callback(current, index, this));
mappedList.push(callback.call(thisArg, current, index, this));
index++;
}
@ -762,31 +742,16 @@ export class SinglyLinkedList<E = any> {
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(n)
*
* The `reduce` function iterates over a linked list and applies a callback function to each element, accumulating a
* single value.
* @param callback - The `callback` parameter is a function that takes two arguments: `accumulator` and `value`. It is
* used to perform a specific operation on each element of the linked list.
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It is the starting
* point for the reduction operation.
* @returns The `reduce` method is returning the final value of the accumulator after iterating through all the
* elements in the linked list.
*/
reduce<T>(callback: (accumulator: T, value: E, index: number, list: SinglyLinkedList<E>) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const current of this) {
accumulator = callback(accumulator, current, index, this);
index++;
}
return accumulator;
}
print(): void {
console.log([...this]);
}
protected* _getIterator(): IterableIterator<E> {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
}
}

View file

@ -7,8 +7,9 @@
*/
import { IterableWithSizeOrLength } from "../../types";
import { ElementCallback, IterableWithSizeOrLength } from "../../types";
import { calcMinUnitsRequired, rangeCheck } from "../../utils";
import { IterableElementBase } from "../base";
/**
* Deque can provide random access with O(1) time complexity
@ -17,7 +18,7 @@ import { calcMinUnitsRequired, rangeCheck } from "../../utils";
* Deque is implemented using a dynamic array. Inserting or deleting beyond both ends of the array may require moving elements or reallocating space.
*/
export class Deque<E> {
export class Deque<E> extends IterableElementBase<E> {
protected _bucketFirst = 0;
protected _firstInBucket = 0;
protected _bucketLast = 0;
@ -35,7 +36,7 @@ export class Deque<E> {
* stored in each bucket. It determines the size of each bucket in the data structure.
*/
constructor(elements: IterableWithSizeOrLength<E> = [], bucketSize = (1 << 12)) {
super();
let _size: number;
if ('length' in elements) {
if (elements.length instanceof Function) _size = elements.length(); else _size = elements.length;
@ -699,67 +700,31 @@ export class Deque<E> {
return arr;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The above function is an implementation of the iterator protocol in TypeScript, allowing the
* object to be iterated over using a for...of loop.
*/
* [Symbol.iterator]() {
for (let i = 0; i < this.size; ++i) {
yield this.getAt(i);
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a deque and applies a callback function to
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* deque. It takes three parameters:
*/
forEach(callback: (element: E, index: number, deque: this) => void) {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new deque containing only the elements that satisfy the given
* predicate function.
* @param predicate - The `predicate` parameter is a function that takes three arguments: `element`,
* `index`, and `deque`.
* @returns The `filter` method is returning a new `Deque` object that contains only the elements
* that satisfy the given `predicate` function.
* The `filter` function creates a new deque containing elements from the original deque that satisfy
* a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the deque itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* deque or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Deque` object that contains the elements that
* satisfy the given predicate function.
*/
filter(predicate: (element: E, index: number, deque: this) => boolean): Deque<E> {
filter(predicate: ElementCallback<E, boolean>, thisArg?: any): Deque<E> {
const newDeque = new Deque<E>([], this._bucketSize);
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
if (predicate.call(thisArg, el, index, this)) {
newDeque.push(el);
}
index++;
@ -771,21 +736,24 @@ export class Deque<E> {
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the deque,
* returning a new deque with the results.
* @param callback - The `callback` parameter is a function that takes three arguments:
* @returns The `map` method is returning a new `Deque` object with the transformed elements.
* The `map` function creates a new Deque by applying a callback function to each element of the
* original Deque.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the deque. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns a new Deque object with the mapped values.
*/
map<T>(callback: (element: E, index: number, deque: this) => T): Deque<T> {
map<T>(callback: ElementCallback<E, T>, thisArg?: any): Deque<T> {
const newDeque = new Deque<T>([], this._bucketSize);
let index = 0;
for (const el of this) {
newDeque.push(callback(el, index, this));
newDeque.push(callback.call(thisArg, el, index, this));
index++;
}
return newDeque;
@ -793,34 +761,24 @@ export class Deque<E> {
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
* Space Complexity: O(n)
*/
print(): void {
console.log([...this])
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `reduce` function iterates over the elements of a deque and applies a callback function to
* each element, accumulating a single value.
* @param callback - The `callback` parameter is a function that takes four arguments:
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It
* is the value that will be passed as the first argument to the `callback` function when reducing
* the elements of the deque.
* @returns the final value of the accumulator after iterating over all elements in the deque and
* applying the callback function to each element.
* The above function is an implementation of the iterator protocol in TypeScript, allowing the
* object to be iterated over using a for...of loop.
*/
reduce<T>(callback: (accumulator: T, element: E, index: number, deque: this) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
protected* _getIterator() {
for (let i = 0; i < this.size; ++i) {
yield this.getAt(i);
}
return accumulator;
}
print(): void {
console.log([...this])
}
/**

View file

@ -4,42 +4,10 @@
* @class
*/
import { SinglyLinkedList } from '../linked-list';
import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
export class LinkedListQueue<E = any> extends SinglyLinkedList<E> {
/**
* The enqueue function adds a value to the end of an array.
* @param {E} value - The value parameter represents the value that you want to add to the queue.
*/
enqueue(value: E) {
this.push(value);
}
/**
* The `dequeue` function removes and returns the first element from a queue, or returns undefined if the queue is empty.
* @returns The method is returning the element at the front of the queue, or undefined if the queue is empty.
*/
dequeue(): E | undefined {
return this.shift();
}
/**
* The `getFirst` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `getFirst()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
getFirst(): E | undefined {
return this.head?.value;
}
/**
* The `peek` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `peek()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
peek(): E | undefined {
return this.getFirst();
}
}
export class Queue<E = any> {
export class Queue<E = any> extends IterableElementBase<E> {
/**
* The constructor initializes an instance of a class with an optional array of elements and sets the offset to 0.
* @param {E[]} [elements] - The `elements` parameter is an optional array of elements of type `E`. If provided, it
@ -47,6 +15,7 @@ export class Queue<E = any> {
* initialized as an empty array.
*/
constructor(elements?: E[]) {
super();
this._nodes = elements || [];
this._offset = 0;
}
@ -304,34 +273,6 @@ export class Queue<E = any> {
console.log([...this]);
}
* [Symbol.iterator]() {
for (const item of this.nodes) {
yield item;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a deque and applies a callback function to
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* deque. It takes three parameters:
*/
forEach(callback: (element: E, index: number, queue: this) => void) {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
@ -341,18 +282,23 @@ export class Queue<E = any> {
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new deque containing only the elements that satisfy the given
* predicate function.
* @param predicate - The `predicate` parameter is a function that takes three arguments: `element`,
* `index`, and `deque`.
* @returns The `filter` method is returning a new `Queue` object that contains only the elements
* that satisfy the given `predicate` function.
* The `filter` function creates a new `Queue` object containing elements from the original `Queue`
* that satisfy a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the queue itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* queue or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Queue` object that contains the elements that
* satisfy the given predicate function.
*/
filter(predicate: (element: E, index: number, queue: this) => boolean): Queue<E> {
filter(predicate: ElementCallback<E, boolean>, thisArg?: any): Queue<E> {
const newDeque = new Queue<E>([]);
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
if (predicate.call(thisArg, el, index, this)) {
newDeque.push(el);
}
index++;
@ -364,33 +310,72 @@ export class Queue<E = any> {
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the deque,
* returning a new deque with the results.
* @param callback - The `callback` parameter is a function that takes three arguments:
* @returns The `map` method is returning a new `Queue` object with the transformed elements.
* The `map` function takes a callback function and applies it to each element in the queue,
* returning a new queue with the results.
* @param callback - The callback parameter is a function that will be called for each element in the
* queue. It takes three arguments: the current element, the index of the current element, and the
* queue itself. The callback function should return a new value that will be added to the new queue.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `Queue` object with the transformed elements.
*/
map<T>(callback: (element: E, index: number, queue: this) => T): Queue<T> {
map<T>(callback: ElementCallback<E, T>, thisArg?: any): Queue<T> {
const newDeque = new Queue<T>([]);
let index = 0;
for (const el of this) {
newDeque.push(callback(el, index, this));
newDeque.push(callback.call(thisArg, el, index, this));
index++;
}
return newDeque;
}
reduce<T>(callback: (accumulator: T, element: E, index: number, queue: this) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
protected* _getIterator() {
for (const item of this.nodes) {
yield item;
}
return accumulator;
}
}
export class LinkedListQueue<E = any> extends SinglyLinkedList<E> {
/**
* The enqueue function adds a value to the end of an array.
* @param {E} value - The value parameter represents the value that you want to add to the queue.
*/
enqueue(value: E) {
this.push(value);
}
/**
* The `dequeue` function removes and returns the first element from a queue, or returns undefined if the queue is empty.
* @returns The method is returning the element at the front of the queue, or undefined if the queue is empty.
*/
dequeue(): E | undefined {
return this.shift();
}
/**
* The `getFirst` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `getFirst()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
getFirst(): E | undefined {
return this.head?.value;
}
/**
* The `peek` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `peek()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
peek(): E | undefined {
return this.getFirst();
}
}

View file

@ -1,9 +1,12 @@
import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**
* @license MIT
* @copyright Tyler Zeng <zrwusa@gmail.com>
* @class
*/
export class Stack<E = any> {
export class Stack<E = any> extends IterableElementBase<E> {
/**
* The constructor initializes an array of elements, which can be provided as an optional parameter.
* @param {E[]} [elements] - The `elements` parameter is an optional parameter of type `E[]`, which represents an array
@ -11,6 +14,7 @@ export class Stack<E = any> {
* is provided and is an array, it is assigned to the `_elements
*/
constructor(elements?: Iterable<E>) {
super();
this._elements = [];
if (elements) {
for (const el of elements) {
@ -154,33 +158,31 @@ export class Stack<E = any> {
}
/**
* Custom iterator for the Stack class.
* @returns An iterator object.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
* [Symbol.iterator]() {
for (let i = 0; i < this.elements.length; i++) {
yield this.elements[i];
}
}
/**
* Applies a function to each element of the stack.
* @param {function(E): void} callback - A function to apply to each element.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new stack containing elements from the original stack that satisfy
* a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the stack itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* stack or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Stack` object that contains the elements that
* satisfy the given predicate function.
*/
forEach(callback: (element: E, index: number, stack: this) => void): void {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
filter(predicate: (element: E, index: number, stack: this) => boolean): Stack<E> {
filter(predicate: ElementCallback<E, boolean>, thisArg?: any): Stack<E> {
const newStack = new Stack<E>();
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
if (predicate.call(thisArg, el, index, this)) {
newStack.push(el);
}
index++;
@ -188,28 +190,45 @@ export class Stack<E = any> {
return newStack;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
map<T>(callback: (element: E, index: number, stack: this) => T): Stack<T> {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the stack,
* returning a new stack with the results.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the stack. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` method is returning a new `Stack` object.
*/
map<T>(callback: ElementCallback<E, T>, thisArg?: any): Stack<T> {
const newStack = new Stack<T>();
let index = 0;
for (const el of this) {
newStack.push(callback(el, index, this));
newStack.push(callback.call(thisArg, el, index, this));
index++;
}
return newStack;
}
reduce<T>(callback: (accumulator: T, element: E, index: number, stack: this) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
}
return accumulator;
}
print(): void {
console.log([...this]);
}
/**
* Custom iterator for the Stack class.
* @returns An iterator object.
*/
protected* _getIterator() {
for (let i = 0; i < this.elements.length; i++) {
yield this.elements[i];
}
}
}

View file

@ -6,6 +6,9 @@
* @license MIT License
*/
import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**
* TrieNode represents a node in the Trie data structure. It holds a character key, a map of children nodes,
* and a flag indicating whether it's the end of a word.
@ -25,8 +28,9 @@ export class TrieNode {
/**
* Trie represents a Trie data structure. It provides basic Trie operations and additional methods.
*/
export class Trie {
export class Trie extends IterableElementBase<string> {
constructor(words?: string[], caseSensitive = true) {
super();
this._root = new TrieNode('');
this._caseSensitive = caseSensitive;
this._size = 0;
@ -339,7 +343,70 @@ export class Trie {
return words;
}
* [Symbol.iterator](): IterableIterator<string> {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function takes a predicate function and returns a new array containing all the
* elements for which the predicate function returns true.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* `word`, `index`, and `this`. It should return a boolean value indicating whether the current
* element should be included in the filtered results or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is provided, it will be
* @returns The `filter` method is returning an array of strings (`string[]`).
*/
filter(predicate: ElementCallback<string, boolean>, thisArg?: any): string[] {
const results: string[] = [];
let index = 0;
for (const word of this) {
if (predicate.call(thisArg, word, index, this)) {
results.push(word);
}
index++;
}
return results;
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new Trie by applying a callback function to each element in the Trie.
* @param callback - The callback parameter is a function that will be called for each element in the
* Trie. It takes three arguments: the current element in the Trie, the index of the current element,
* and the Trie itself. The callback function should return a new value for the element.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new Trie object.
*/
map(callback: ElementCallback<string, string>, thisArg?: any): Trie {
const newTrie = new Trie();
let index = 0;
for (const word of this) {
newTrie.add(callback.call(thisArg, word, index, this));
index++;
}
return newTrie;
}
print() {
console.log([...this]);
}
protected* _getIterator(): IterableIterator<string> {
function* _dfs(node: TrieNode, path: string): IterableIterator<string> {
if (node.isEnd) {
yield path;
@ -352,50 +419,6 @@ export class Trie {
yield* _dfs(this.root, '');
}
forEach(callback: (word: string, index: number, trie: this) => void): void {
let index = 0;
for (const word of this) {
callback(word, index, this);
index++;
}
}
filter(predicate: (word: string, index: number, trie: this) => boolean): string[] {
const results: string[] = [];
let index = 0;
for (const word of this) {
if (predicate(word, index, this)) {
results.push(word);
}
index++;
}
return results;
}
map(callback: (word: string, index: number, trie: this) => string): Trie {
const newTrie = new Trie();
let index = 0;
for (const word of this) {
newTrie.add(callback(word, index, this));
index++;
}
return newTrie;
}
reduce<T>(callback: (accumulator: T, word: string, index: number, trie: this) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const word of this) {
accumulator = callback(accumulator, word, index, this);
index++;
}
return accumulator;
}
print() {
console.log([...this]);
}
/**
* Time Complexity: O(M), where M is the length of the input string.
* Space Complexity: O(1) - Constant space.

View file

@ -0,0 +1,6 @@
import { IterableElementBase, IterablePairBase } from "../../../data-structures";
export type PairCallback<K, V, R> = (value: V, key: K, index: number, container: IterablePairBase<K, V>) => R;
export type ElementCallback<V, R> = (element: V, index: number, container: IterableElementBase<V>) => R;
export type ReducePairCallback<K, V, R> = (accumulator: R, value: V, key: K, index: number, container: IterablePairBase<K, V>) => R;
export type ReduceElementCallback<V, R> = (accumulator: R, element: V, index: number, container: IterableElementBase<V>) => R;

View file

@ -0,0 +1 @@
export * from './base';

View file

@ -9,3 +9,4 @@ export * from './queue';
export * from './stack';
export * from './tree';
export * from './trie';
export * from './base';

View file

@ -305,30 +305,30 @@ describe('AVLTree iterative methods test', () => {
test('forEach should iterate over all elements', () => {
const mockCallback = jest.fn();
avl.forEach((entry) => {
mockCallback(entry);
avl.forEach((value, key) => {
mockCallback(value, key);
});
expect(mockCallback.mock.calls.length).toBe(3);
expect(mockCallback.mock.calls[0][0]).toEqual([1, 'a']);
expect(mockCallback.mock.calls[1][0]).toEqual([2, 'b']);
expect(mockCallback.mock.calls[2][0]).toEqual([3, 'c']);
expect(mockCallback.mock.calls[0]).toEqual(['a', 1]);
expect(mockCallback.mock.calls[1]).toEqual(['b', 2]);
expect(mockCallback.mock.calls[2]).toEqual(['c', 3]);
});
test('filter should return a new tree with filtered elements', () => {
const filteredTree = avl.filter(([key]) => key > 1);
const filteredTree = avl.filter((value, key) => key > 1);
expect(filteredTree.size).toBe(2);
expect([...filteredTree]).toEqual([[2, 'b'], [3, 'c']]);
});
test('map should return a new tree with modified elements', () => {
const mappedTree = avl.map(([key]) => (key * 2).toString());
const mappedTree = avl.map((value, key) => (key * 2).toString());
expect(mappedTree.size).toBe(3);
expect([...mappedTree]).toEqual([[1, '2'], [2, '4'], [3, '6']]);
});
test('reduce should accumulate values', () => {
const sum = avl.reduce((acc, [key]) => acc + key, 0);
const sum = avl.reduce((acc, value, key) => acc + key, 0);
expect(sum).toBe(6);
});
@ -350,11 +350,11 @@ describe('AVLTree iterative methods test', () => {
test('should keys', () => {
const keys = avl.keys();
expect(keys).toEqual([1, 2, 3]);
expect([...keys]).toEqual([1, 2, 3]);
});
test('should values', () => {
const values = avl.values();
expect(values).toEqual(['a', 'b', 'c']);
expect([...values]).toEqual(['a', 'b', 'c']);
});
});

View file

@ -580,30 +580,30 @@ describe('BinaryTree iterative methods test', () => {
test('forEach should iterate over all elements', () => {
const mockCallback = jest.fn();
binaryTree.forEach((entry) => {
mockCallback(entry);
binaryTree.forEach((value, key) => {
mockCallback(value, key);
});
expect(mockCallback.mock.calls.length).toBe(3);
expect(mockCallback.mock.calls[0][0]).toEqual([2, 'b']);
expect(mockCallback.mock.calls[1][0]).toEqual([1, 'a']);
expect(mockCallback.mock.calls[2][0]).toEqual([3, 'c']);
expect(mockCallback.mock.calls[0]).toEqual(['b', 2]);
expect(mockCallback.mock.calls[1]).toEqual(['a', 1]);
expect(mockCallback.mock.calls[2]).toEqual(['c', 3]);
});
test('filter should return a new tree with filtered elements', () => {
const filteredTree = binaryTree.filter(([key]) => key > 1);
const filteredTree = binaryTree.filter((value, key) => key > 1);
expect(filteredTree.size).toBe(2);
expect([...filteredTree]).toEqual([[3, 'c'], [2, 'b']]);
});
test('map should return a new tree with modified elements', () => {
const mappedTree = binaryTree.map(([key]) => (key * 2).toString());
const mappedTree = binaryTree.map((value, key) => (key * 2).toString());
expect(mappedTree.size).toBe(3);
expect([...mappedTree]).toEqual([[1, '2'], [2, '4'], [3, '6']]);
});
test('reduce should accumulate values', () => {
const sum = binaryTree.reduce((acc, [key]) => acc + key, 0);
const sum = binaryTree.reduce((acc, currentValue, currentKey) => acc + currentKey, 0);
expect(sum).toBe(6);
});
@ -625,11 +625,11 @@ describe('BinaryTree iterative methods test', () => {
test('should keys', () => {
const keys = binaryTree.keys();
expect(keys).toEqual([2, 1, 3]);
expect([...keys]).toEqual([2, 1, 3]);
});
test('should values', () => {
const values = binaryTree.values();
expect(values).toEqual(['b', 'a', 'c']);
expect([...values]).toEqual(['b', 'a', 'c']);
});
});

View file

@ -864,30 +864,30 @@ describe('BST iterative methods test', () => {
test('forEach should iterate over all elements', () => {
const mockCallback = jest.fn();
bst.forEach((entry) => {
mockCallback(entry);
bst.forEach((value, key) => {
mockCallback(value, key);
});
expect(mockCallback.mock.calls.length).toBe(3);
expect(mockCallback.mock.calls[0][0]).toEqual([1, 'a']);
expect(mockCallback.mock.calls[1][0]).toEqual([2, 'b']);
expect(mockCallback.mock.calls[2][0]).toEqual([3, 'c']);
expect(mockCallback.mock.calls[0]).toEqual(['a', 1]);
expect(mockCallback.mock.calls[1]).toEqual(['b', 2]);
expect(mockCallback.mock.calls[2]).toEqual(['c', 3]);
});
test('filter should return a new tree with filtered elements', () => {
const filteredTree = bst.filter(([key]) => key > 1);
const filteredTree = bst.filter((value, key) => key > 1);
expect(filteredTree.size).toBe(2);
expect([...filteredTree]).toEqual([[2, 'b'], [3, 'c']]);
});
test('map should return a new tree with modified elements', () => {
const mappedTree = bst.map(([key]) => (key * 2).toString());
const mappedTree = bst.map((value, key) => (key * 2).toString());
expect(mappedTree.size).toBe(3);
expect([...mappedTree]).toEqual([[1, '2'], [2, '4'], [3, '6']]);
});
test('reduce should accumulate values', () => {
const sum = bst.reduce((acc, [key]) => acc + key, 0);
const sum = bst.reduce((acc, value, key) => acc + key, 0);
expect(sum).toBe(6);
});
@ -909,11 +909,11 @@ describe('BST iterative methods test', () => {
test('should keys', () => {
const keys = bst.keys();
expect(keys).toEqual([1, 2, 3]);
expect([...keys]).toEqual([1, 2, 3]);
});
test('should values', () => {
const values = bst.values();
expect(values).toEqual(['a', 'b', 'c']);
expect([...values]).toEqual(['a', 'b', 'c']);
});
});

View file

@ -524,30 +524,30 @@ describe('RedBlackTree iterative methods test', () => {
test('forEach should iterate over all elements', () => {
const mockCallback = jest.fn();
rbTree.forEach((entry) => {
mockCallback(entry);
rbTree.forEach((value, key) => {
mockCallback(value, key);
});
expect(mockCallback.mock.calls.length).toBe(3);
expect(mockCallback.mock.calls[0][0]).toEqual([1, 'a']);
expect(mockCallback.mock.calls[1][0]).toEqual([2, 'b']);
expect(mockCallback.mock.calls[2][0]).toEqual([3, 'c']);
expect(mockCallback.mock.calls[0]).toEqual(['a', 1]);
expect(mockCallback.mock.calls[1]).toEqual(['b', 2]);
expect(mockCallback.mock.calls[2]).toEqual(['c', 3]);
});
test('filter should return a new tree with filtered elements', () => {
const filteredTree = rbTree.filter(([key]) => key > 1);
const filteredTree = rbTree.filter((value, key) => key > 1);
expect(filteredTree.size).toBe(2);
expect([...filteredTree]).toEqual([[2, 'b'], [3, 'c']]);
});
test('map should return a new tree with modified elements', () => {
const mappedTree = rbTree.map(([key]) => (key * 2).toString());
const mappedTree = rbTree.map((value, key) => (key * 2).toString());
expect(mappedTree.size).toBe(3);
expect([...mappedTree]).toEqual([[1, '2'], [2, '4'], [3, '6']]);
});
test('reduce should accumulate values', () => {
const sum = rbTree.reduce((acc, [key]) => acc + key, 0);
const sum = rbTree.reduce((acc, value, key) => acc + key, 0);
expect(sum).toBe(6);
});

View file

@ -619,30 +619,30 @@ describe('TreeMultimap iterative methods test', () => {
test('forEach should iterate over all elements', () => {
const mockCallback = jest.fn();
treeMM.forEach((entry) => {
mockCallback(entry);
treeMM.forEach((value, key) => {
mockCallback(value, key);
});
expect(mockCallback.mock.calls.length).toBe(3);
expect(mockCallback.mock.calls[0][0]).toEqual([1, 'a']);
expect(mockCallback.mock.calls[1][0]).toEqual([2, 'b']);
expect(mockCallback.mock.calls[2][0]).toEqual([3, 'c']);
expect(mockCallback.mock.calls[0]).toEqual(['a', 1]);
expect(mockCallback.mock.calls[1]).toEqual(['b', 2]);
expect(mockCallback.mock.calls[2]).toEqual(['c', 3]);
});
test('filter should return a new tree with filtered elements', () => {
const filteredTree = treeMM.filter(([key]) => key > 1);
const filteredTree = treeMM.filter((value, key) => key > 1);
expect(filteredTree.size).toBe(2);
expect([...filteredTree]).toEqual([[2, 'b'], [3, 'c']]);
});
test('map should return a new tree with modified elements', () => {
const mappedTree = treeMM.map(([key]) => (key * 2).toString());
const mappedTree = treeMM.map((value, key) => (key * 2).toString());
expect(mappedTree.size).toBe(3);
expect([...mappedTree]).toEqual([[1, '2'], [2, '4'], [3, '6']]);
});
test('reduce should accumulate values', () => {
const sum = treeMM.reduce((acc, [key]) => acc + key, 0);
const sum = treeMM.reduce((acc, value, key) => acc + key, 0);
expect(sum).toBe(6);
});
@ -665,11 +665,11 @@ describe('TreeMultimap iterative methods test', () => {
test('should keys', () => {
const keys = treeMM.keys();
expect(keys).toEqual([1, 2, 3]);
expect([...keys]).toEqual([1, 2, 3]);
});
test('should values', () => {
const values = treeMM.values();
expect(values).toEqual(['a', 'b', 'c']);
expect([...values]).toEqual(['a', 'b', 'c']);
});
});

View file

@ -616,22 +616,22 @@ describe('DirectedGraph iterative Methods', () => {
test('forEach should apply a function to each vertex', () => {
const result: VertexKey[] = [];
graph.forEach(vertex => result.push(vertex[0]));
graph.forEach((value, key) => key && result.push(key));
expect(result).toEqual(vertices);
});
test('filter should return vertices that satisfy the condition', () => {
const filtered = graph.filter(vertex => vertex[0] === 'A' || vertex[0] === 'B');
const filtered = graph.filter((value, vertex) => vertex === 'A' || vertex === 'B');
expect(filtered).toEqual([["A", undefined], ["B", undefined]]);
});
test('map should apply a function to each vertex and return a new array', () => {
const mapped = graph.map(vertex => vertex[0] + '_mapped');
const mapped = graph.map((value, vertex) => vertex + '_mapped');
expect(mapped).toEqual(vertices.map(v => v + '_mapped'));
});
test('reduce should accumulate a value based on each vertex', () => {
const concatenated = graph.reduce((acc, vertex) => acc + vertex[0], '');
const concatenated = graph.reduce((acc, value, key) => acc + key, '');
expect(concatenated).toBe(vertices.join(''));
});
});

View file

@ -548,10 +548,10 @@ describe('LinkedHashMap setMany, keys, values', () => {
})
test('keys', () => {
expect(hm.keys()).toEqual([2, 3, 4, 5, 6])
expect([...hm.keys()]).toEqual([2, 3, 4, 5, 6])
});
test('values', () => {
expect(hm.values()).toEqual([2, 3, 4, 5, 6])
expect([...hm.values()]).toEqual([2, 3, 4, 5, 6])
});
});

View file

@ -397,3 +397,31 @@ describe('DoublyLinkedList Operation Test', () => {
expect(shiftedObj).toBe(obj1);
});
});
describe('iterable methods', () => {
it('should forEach, some, every, filter, map, reduce of the deque', () => {
const dl = new DoublyLinkedList<number>()
dl.push(1);
dl.push(2);
dl.push(3);
const mockCallback = jest.fn();
dl.forEach((element) => {
mockCallback(element);
});
expect(mockCallback.mock.calls.length).toBe(3);
expect(mockCallback.mock.calls[0]).toEqual([1]);
expect(mockCallback.mock.calls[1]).toEqual([2]);
expect(mockCallback.mock.calls[2]).toEqual([3]);
expect(dl.every(element => element > 0)).toBe(true);
expect(dl.every(element => element > 1)).toBe(false);
expect(dl.some(element => element > 2)).toBe(true);
expect([...dl.filter(element => element > 2)]).toEqual([3]);
expect([...dl.map(element => element * 2)]).toEqual([2, 4, 6]);
expect(dl.reduce((accumulator, element) => accumulator + element, 0)).toEqual(6);
});
});

View file

@ -471,3 +471,28 @@ describe('SinglyLinkedList', () => {
expect(list1.reduce((acc, value) => acc + value, 0)).toEqual(6);
});
});
describe('iterable methods', () => {
it('should forEach, some, every, filter, map, reduce of the deque', () => {
const sl = new SinglyLinkedList<number>([1, 2, 3])
const mockCallback = jest.fn();
sl.forEach((element) => {
mockCallback(element);
});
expect(mockCallback.mock.calls.length).toBe(3);
expect(mockCallback.mock.calls[0]).toEqual([1]);
expect(mockCallback.mock.calls[1]).toEqual([2]);
expect(mockCallback.mock.calls[2]).toEqual([3]);
expect(sl.every(element => element > 0)).toBe(true);
expect(sl.every(element => element > 1)).toBe(false);
expect(sl.some(element => element > 2)).toBe(true);
expect([...sl.filter(element => element > 2)]).toEqual([3]);
expect([...sl.map(element => element * 2)]).toEqual([2, 4, 6]);
expect(sl.reduce((accumulator, element) => accumulator + element, 0)).toEqual(6);
});
});

View file

@ -447,4 +447,29 @@ describe('Deque', () => {
});
});
describe('iterable methods', () => {
it('should forEach, some, every, filter, map, reduce of the deque', () => {
deque.push(1);
deque.push(2);
deque.push(3);
const mockCallback = jest.fn();
deque.forEach((element) => {
mockCallback(element);
});
expect(mockCallback.mock.calls.length).toBe(3);
expect(mockCallback.mock.calls[0]).toEqual([1]);
expect(mockCallback.mock.calls[1]).toEqual([2]);
expect(mockCallback.mock.calls[2]).toEqual([3]);
expect(deque.every(element => element > 0)).toBe(true);
expect(deque.every(element => element > 1)).toBe(false);
expect(deque.some(element => element > 2)).toBe(true);
expect([...deque.filter(element => element > 2)]).toEqual([3]);
expect([...deque.map(element => element * 2)]).toEqual([2, 4, 6]);
expect(deque.reduce((accumulator, element) => accumulator + element, 0)).toEqual(6);
});
});
});