mirror of
https://github.com/zrwusa/data-structure-typed.git
synced 2025-01-18 19:24:05 +00:00
Avoid using the Array.unshift method to slightly enhance AVLTree insertion performance.
This commit is contained in:
parent
70f439da13
commit
0abd5eced7
|
@ -153,7 +153,7 @@ export abstract class AbstractBinaryTree<N extends AbstractBinaryTreeNode<N['val
|
|||
return this._root;
|
||||
}
|
||||
|
||||
private _size: number = 0;
|
||||
private _size = 0;
|
||||
|
||||
get size(): number {
|
||||
return this._size;
|
||||
|
@ -350,17 +350,23 @@ export abstract class AbstractBinaryTree<N extends AbstractBinaryTreeNode<N['val
|
|||
return idsOrNodes.length === this.addMany(idsOrNodes, data).length;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* The `remove` function removes a node from a binary search tree and returns the deleted node along with the parent
|
||||
* node that needs to be balanced.
|
||||
* The `remove` function removes a node from a binary search tree and returns the deleted node along with the parent node
|
||||
* that needs to be balanced.
|
||||
* @param {N | BinaryTreeNodeId} nodeOrId - The `nodeOrId` parameter can be either a node object (`N`) or a binary tree
|
||||
* node ID (`BinaryTreeNodeId`).
|
||||
* @param {boolean} [ignoreCount] - The `ignoreCount` parameter is an optional boolean parameter that determines
|
||||
* whether to ignore the count of the nodes in the binary tree. If `ignoreCount` is set to `true`, the count of the
|
||||
* nodes in the binary tree will not be updated after removing a node. If `ignoreCount`
|
||||
* @param {boolean} [isUpdateAllLeftSum] - The `isUpdateAllLeftSum` parameter is an optional boolean parameter that
|
||||
* determines whether to update the left sum of all nodes in the binary tree after removing a node. If
|
||||
* `isUpdateAllLeftSum` is set to `true`, the left sum of all nodes will be updated. If it
|
||||
* @returns The function `remove` returns an array of `BinaryTreeDeletedResult<N>` objects.
|
||||
*/
|
||||
remove(nodeOrId: N | BinaryTreeNodeId, ignoreCount?: boolean): BinaryTreeDeletedResult<N>[] {
|
||||
remove(nodeOrId: N | BinaryTreeNodeId, isUpdateAllLeftSum?: boolean): BinaryTreeDeletedResult<N>[] {
|
||||
|
||||
isUpdateAllLeftSum = isUpdateAllLeftSum === undefined ? true: isUpdateAllLeftSum;
|
||||
// TODO may implement update all left sum
|
||||
if (isUpdateAllLeftSum) {}
|
||||
|
||||
const bstDeletedResult: BinaryTreeDeletedResult<N>[] = [];
|
||||
if (!this.root) return bstDeletedResult;
|
||||
|
||||
|
@ -598,20 +604,26 @@ export abstract class AbstractBinaryTree<N extends AbstractBinaryTreeNode<N['val
|
|||
}
|
||||
|
||||
/**
|
||||
* The function getPathToRoot takes a node and returns an array of nodes representing the path from the given node to
|
||||
* the root node.
|
||||
* @param {N} node - The parameter `node` represents a node in a tree data structure.
|
||||
* The function `getPathToRoot` returns an array of nodes representing the path from a given node to the root node, with
|
||||
* an option to reverse the order of the nodes.
|
||||
* @param {N} node - The `node` parameter represents a node in a tree structure. It is of type `N`, which could be any
|
||||
* type that represents a node in your specific implementation.
|
||||
* @param {boolean} [isReverse=true] - The `isReverse` parameter is a boolean flag that determines whether the resulting
|
||||
* path should be reversed or not. If `isReverse` is set to `true`, the path will be reversed before returning it. If
|
||||
* `isReverse` is set to `false` or not provided, the path will
|
||||
* @returns The function `getPathToRoot` returns an array of nodes (`N[]`).
|
||||
*/
|
||||
getPathToRoot(node: N): N[] {
|
||||
getPathToRoot(node: N, isReverse = true): N[] {
|
||||
// TODO to support get path through passing id
|
||||
const result: N[] = [];
|
||||
while (node.parent) {
|
||||
result.unshift(node);
|
||||
// Array.push + Array.reverse is more efficient than Array.unshift
|
||||
// TODO may consider using Deque, so far this is not the performance bottleneck
|
||||
result.push(node);
|
||||
node = node.parent;
|
||||
}
|
||||
result.unshift(node);
|
||||
return result;
|
||||
result.push(node);
|
||||
return isReverse ? result.reverse() : result;
|
||||
}
|
||||
|
||||
getLeftMost(): N | null;
|
||||
|
|
|
@ -79,9 +79,9 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
* @returns The balance factor of the given AVL tree node.
|
||||
*/
|
||||
protected _balanceFactor(node: N): number {
|
||||
if (!node.right) // node has no right subtree
|
||||
if (!node.right) // node has no right subtree
|
||||
return -node.height;
|
||||
else if (!node.left) // node has no left subtree
|
||||
else if (!node.left) // node has no left subtree
|
||||
return +node.height;
|
||||
else
|
||||
return node.right.height - node.left.height;
|
||||
|
@ -92,13 +92,12 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
* @param node - The parameter `node` is an AVLTreeNode object, which represents a node in an AVL tree.
|
||||
*/
|
||||
protected _updateHeight(node: N): void {
|
||||
if (!node.left && !node.right) // node is a leaf
|
||||
if (!node.left && !node.right)
|
||||
node.height = 0;
|
||||
else if (!node.left) {
|
||||
// node has no left subtree
|
||||
const rightHeight = node.right ? node.right.height : 0;
|
||||
node.height = 1 + rightHeight;
|
||||
} else if (!node.right) // node has no right subtree
|
||||
} else if (!node.right)
|
||||
node.height = 1 + node.left.height;
|
||||
else
|
||||
node.height = 1 + Math.max(node.right.height, node.left.height);
|
||||
|
@ -110,29 +109,38 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
* @param node - The `node` parameter is an AVLTreeNode object, which represents a node in an AVL tree.
|
||||
*/
|
||||
protected _balancePath(node: N): void {
|
||||
const path = this.getPathToRoot(node);
|
||||
for (let i = path.length - 1; i >= 0; i--) {
|
||||
|
||||
const path = this.getPathToRoot(node, false); // first O(log n) + O(log n)
|
||||
for (let i = 0; i < path.length; i++) { // second O(log n)
|
||||
const A = path[i];
|
||||
this._updateHeight(A);
|
||||
switch (this._balanceFactor(A)) {
|
||||
// Update Heights: After inserting a node, backtrack from the insertion point to the root node, updating the height of each node along the way.
|
||||
this._updateHeight(A); // first O(1)
|
||||
// Check Balance: Simultaneously with height updates, check if each node violates the balance property of an AVL tree.
|
||||
// Balance Restoration: If a balance issue is discovered after inserting a node, it requires balance restoration operations. Balance restoration includes four basic cases where rotation operations need to be performed to fix the balance:
|
||||
switch (this._balanceFactor(A)) { // second O(1)
|
||||
case -2:
|
||||
if (A && A.left) {
|
||||
if (this._balanceFactor(A.left) <= 0) {
|
||||
this._balanceLL(A); // Perform LL rotation
|
||||
if (this._balanceFactor(A.left) <= 0) { // second O(1)
|
||||
// Left Rotation (LL Rotation): When the inserted node is in the left subtree of the left subtree, causing an imbalance.
|
||||
this._balanceLL(A);
|
||||
} else {
|
||||
this._balanceLR(A); // Perform LR rotation
|
||||
// Left-Right Rotation (LR Rotation): When the inserted node is in the right subtree of the left subtree, causing an imbalance.
|
||||
this._balanceLR(A);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case +2:
|
||||
if (A && A.right) {
|
||||
if (this._balanceFactor(A.right) >= 0) {
|
||||
this._balanceRR(A); // Perform RR rotation
|
||||
// Right Rotation (RR Rotation): When the inserted node is in the right subtree of the right subtree, causing an imbalance.
|
||||
this._balanceRR(A);
|
||||
} else {
|
||||
this._balanceRL(A); // Perform RL rotation
|
||||
// Right-Left Rotation (RL Rotation): When the inserted node is in the left subtree of the right subtree, causing an imbalance.
|
||||
this._balanceRL(A);
|
||||
}
|
||||
}
|
||||
}
|
||||
// TODO So far, no sure if this is necessary that Recursive Repair: Once rotation operations are executed, it may cause imbalance issues at higher levels of the tree. Therefore, you need to recursively check and repair imbalance problems upwards until you reach the root node.
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -142,7 +150,7 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
*/
|
||||
protected _balanceLL(A: N): void {
|
||||
const parentOfA = A.parent;
|
||||
const B = A.left; // A is left-heavy and B is left-heavy
|
||||
const B = A.left;
|
||||
A.parent = B;
|
||||
if (B && B.right) {
|
||||
B.right.parent = A;
|
||||
|
@ -159,8 +167,8 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
}
|
||||
|
||||
if (B) {
|
||||
A.left = B.right; // Make T2 the left subtree of A
|
||||
B.right = A; // Make A the left child of B
|
||||
A.left = B.right;
|
||||
B.right = A;
|
||||
}
|
||||
this._updateHeight(A);
|
||||
if (B) this._updateHeight(B);
|
||||
|
@ -172,10 +180,10 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
*/
|
||||
protected _balanceLR(A: N): void {
|
||||
const parentOfA = A.parent;
|
||||
const B = A.left; // A is left-heavy
|
||||
const B = A.left;
|
||||
let C = null;
|
||||
if (B) {
|
||||
C = B.right;// B is right-heavy
|
||||
C = B.right;
|
||||
}
|
||||
if (A) A.parent = C;
|
||||
if (B) B.parent = C;
|
||||
|
@ -203,13 +211,13 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
}
|
||||
|
||||
if (C) {
|
||||
A.left = C.right; // Make T3 the left subtree of A
|
||||
if (B) B.right = C.left; // Make T2 the right subtree of B
|
||||
A.left = C.right;
|
||||
if (B) B.right = C.left;
|
||||
C.left = B;
|
||||
C.right = A;
|
||||
}
|
||||
|
||||
this._updateHeight(A); // Adjust heights
|
||||
this._updateHeight(A);
|
||||
B && this._updateHeight(B);
|
||||
C && this._updateHeight(C);
|
||||
}
|
||||
|
@ -220,7 +228,7 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
*/
|
||||
protected _balanceRR(A: N): void {
|
||||
const parentOfA = A.parent;
|
||||
const B = A.right; // A is right-heavy and B is right-heavy
|
||||
const B = A.right;
|
||||
A.parent = B;
|
||||
if (B) {
|
||||
if (B.left) {
|
||||
|
@ -242,7 +250,7 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
}
|
||||
|
||||
if (B) {
|
||||
A.right = B.left; // Make T2 the right subtree of A
|
||||
A.right = B.left;
|
||||
B.left = A;
|
||||
}
|
||||
this._updateHeight(A);
|
||||
|
@ -255,10 +263,10 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
*/
|
||||
protected _balanceRL(A: N): void {
|
||||
const parentOfA = A.parent;
|
||||
const B = A.right; // A is right-heavy
|
||||
const B = A.right;
|
||||
let C = null;
|
||||
if (B) {
|
||||
C = B.left; // B is left-heavy
|
||||
C = B.left;
|
||||
}
|
||||
|
||||
A.parent = C;
|
||||
|
@ -287,12 +295,12 @@ export class AVLTree<N extends AVLTreeNode<N['val'], N> = AVLTreeNode> extends B
|
|||
}
|
||||
}
|
||||
|
||||
if (C) A.right = C.left; // Make T2 the right subtree of A
|
||||
if (B && C) B.left = C.right; // Make T3 the left subtree of B
|
||||
if (C) A.right = C.left;
|
||||
if (B && C) B.left = C.right;
|
||||
if (C) C.left = A;
|
||||
if (C) C.right = B;
|
||||
|
||||
this._updateHeight(A); // Adjust heights
|
||||
this._updateHeight(A);
|
||||
B && this._updateHeight(B);
|
||||
C && this._updateHeight(C);
|
||||
}
|
||||
|
|
|
@ -111,6 +111,8 @@ export class BST<N extends BSTNode<N['val'], N> = BSTNode> extends BinaryTree<N>
|
|||
return inserted;
|
||||
}
|
||||
|
||||
// TODO need to implement addMany by using binary search for insertion.
|
||||
|
||||
/**
|
||||
* The function returns the first node in a binary tree that matches the given property name and value.
|
||||
* @param {BinaryTreeNodeId | N} nodeProperty - The `nodeProperty` parameter can be either a `BinaryTreeNodeId` or a
|
||||
|
|
Loading…
Reference in a new issue